Seasonal variability of the Arabian Sea intermediate circulation and its impact on seasonal changes of the upper oxygen minimum zone

Author:

Schmidt Henrike,Czeschel Rena,Visbeck Martin

Abstract

Abstract. Oxygen minimum zones (OMZs) in the open ocean occur below the surface in regions of weak ventilation and high biological productivity with associated sinking organic matter. Very low levels of dissolved oxygen alter biogeochemical cycles and significantly affect marine life. One of the most intense though poorly understood OMZs in the world ocean is located in the Arabian Sea between 300 and 1000 m of depth. An improved understanding of the physical processes that have an impact on the OMZ in the Arabian Sea is expected to increase the reliability of assessments of its future development. This study uses reanalysis velocity fields from the ocean model HYCOM (Hybrid Coordinate Ocean Model), which are verified with observational data, to investigate advective pathways of Lagrangian particles into the Arabian Sea OMZ at intermediate depths between 200 and 800 m. In the eastern basin, the vertical expansion of the OMZ is strongest during the winter monsoon, revealing a core thickness 1000 m deep and oxygen values below 5 µmol kg−1. The minimum oxygen concentration might be favoured by a maximum water mass advection that follows the main advective pathway of Lagrangian particles along the perimeter of the basin into the eastern basin of the Arabian Sea during the winter monsoon. These water masses pass regions of high primary production and respiration, contributing to the transport of low-oxygenated water into the eastern part of the OMZ. The maximum oxygen concentration in the western basin of the Arabian Sea in May coincides with a maximum southward water mass advection in the western basin during the spring intermonsoon, supplying the western core of the OMZ with high-oxygenated water. The maximum oxygen concentration in the eastern basin of the Arabian Sea in May might be associated with the northward inflow of water across 10∘ N into the Arabian Sea, which is highest during the spring intermonsoon. The Red Sea outflow of advective particles into the western and eastern basin starts during the summer monsoon associated with the northeastward current during the summer monsoon. On the other hand, waters from the Persian Gulf are advected with little variation on seasonal timescales. As the weak seasonal cycle of oxygen concentration in the eastern and western basin can be explained by seasonally changing advection of water masses at intermediate depths into the Arabian Sea OMZ (ASOMZ), the simplified backward-trajectory approach seems to be a good method for prediction of the seasonality of advective pathways of Lagrangian particles into the ASOMZ.

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dissolved Oxygen Recovery in the Oxygen Minimum Zone of the Arabian Sea in Recent Decade as Observed by BGC‐Argo Floats;Geophysical Research Letters;2024-06-14

2. Ventilation of the Arabian Sea Oxygen Minimum Zone by Persian Gulf Water;Journal of Geophysical Research: Oceans;2024-04-26

3. Distinct oxygenation modes of the Gulf of Oman over the past 43 000 years – a multi-proxy approach;Biogeosciences;2024-03-20

4. Oxygen, carbon, and pH variability in the Indian Ocean;The Indian Ocean and its Role in the Global Climate System;2024

5. Ocean redox evolution past and present;Reference Module in Earth Systems and Environmental Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3