Direct dating of overprinting fluid systems in the Martabe epithermal gold deposit using highly retentive alunite

Author:

Muston JackORCID,Forster MarnieORCID,Vasegh Davood,Alderton Conrad,Crispin Shawn,Lister GordonORCID

Abstract

Abstract. The Martabe gold deposits in Sumatra formed in a shallow crustal epithermal environment associated with intermediate mafic intrusions adjacent to an active right-lateral wrench system. Gas/fluid temperatures reached 200–350 ∘C. The structural geology suggests episodic switches in stress orientations during a Plio-Pleistocene seismotectonic evolution. Different mineralisation events may have been associated with oscillations in this earthquake cycle, so samples containing alunite were collected for 40Ar / 39Ar geochronology to constrain the timing. 39Ar diffusion experiments were performed to constrain variation in argon retentivity. The age spectra were produced by incremental step-heating with heating times chosen so similar percentages of 39Ar gas release occurred during as many steps as possible. This ensured the detail necessary for analysis of the complex morphology of these spectra by applying the method of asymptotes and limits, which enabled recognition of different growth events of alunite in overprinting fluid systems. It was possible to provide estimates as to the frequency of individual events and their duration. The heating schedule also ensured that Arrhenius data populated the inverse temperature axis with sufficient detail to allow modelling. Activation energies were between 370–660 kJ mol−1. Application of Dodson's recursion determined closure temperatures that range from 400–560 ∘C for a cooling rate of 100 ∘C Ma−1. Such estimates are higher than any temperature to be expected in the natural system, giving confidence that the ages represent the timing of growth during periods of active fluid movement and alteration: a hypothesis confirmed by modelling age spectra using the MacArgon program. We conclude that gold in the Purnama pit resulted from overprinting fluid rock interactions during very short mineralisation episodes at ∼2.25 and ∼2.00 Ma.

Funder

Australian Research Council

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3