ChronoLorica: introduction of a soil–landscape evolution model combined with geochronometers

Author:

van der Meij W. MarijnORCID,Temme Arnaud J. A. M.,Binnie Steven A.,Reimann TonyORCID

Abstract

Abstract. Understanding long-term soil and landscape evolution can help us understand the threats to current-day soils, landscapes and their functions. The temporal evolution of soils and landscapes can be studied using geochronometers, such as optically stimulated luminescence (OSL) particle ages or radionuclide inventories. Also, soil–landscape evolution models (SLEMs) can be used to study the spatial and temporal evolution of soils and landscapes through numerical modelling of the processes responsible for the evolution. SLEMs and geochronometers have been combined in the past, but often these couplings focus on a single geochronometer, are designed for specific idealized landscape positions, or do not consider multiple transport processes or post-depositional mixing processes that can disturb the geochronometers in sedimentary archives. We present ChronoLorica, a coupling of the soil–landscape evolution model Lorica with a geochronological module. The module traces spatiotemporal patterns of particle ages, analogous to OSL ages, and radionuclide inventories during the simulations of soil and landscape evolution. The geochronological module opens rich possibilities for data-based calibration of simulated model processes, which include natural processes, such as bioturbation and soil creep, as well as anthropogenic processes, such as tillage. Moreover, ChronoLorica can be applied to transient landscapes that are subject to complex, non-linear boundary conditions, such as land use intensification, and processes of post-depositional disturbance which often result in complex geo-archives. In this contribution, we illustrate the model functionality and applicability by simulating soil and landscape evolution along a two-dimensional hillslope. We show how the model simulates the development of the following three geochronometers: OSL particle ages, meteoric 10Be inventories and in situ 10Be inventories. The results are compared with field observations from comparable landscapes. We also discuss the limitations of the model and highlight its potential applications in pedogenical, geomorphological or geological studies.

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3