Volcanism straddling the Miocene–Pliocene boundary on Patmos and Chiliomodi islands (southeastern Aegean Sea): insights from new 40Ar ∕ 39Ar ages

Author:

Boehm Katharina M.,Kuiper Klaudia F.,Uzel BoraORCID,Vroon Pieter Z.,Wijbrans Jan R.ORCID

Abstract

Abstract. The island of Patmos, in the eastern Aegean Sea, consists almost entirely of late Miocene to Pliocene volcanic rocks. The magmatism in the Aegean is governed by subduction of the African plate below the Eurasian plate, back-arc extension, slab rollback, slab edge processes and westward extrusion of central Anatolia to the west along the Northern Anatolian Fault into the Aegean domain. The evolution of the Aegean basin is that of a back-arc setting, with a southerly trend in the locus of both convergent tectonics and back-arc stretching, allowing intermittent upwelling of arc, lithospheric and asthenospheric magmas. Here, we present new 40Ar/39Ar age data for Patmos and the nearby small island of Chiliomodi to place this volcanism in a new high-resolution geochronological framework. High-resolution geochronology provides a key to understanding the mechanisms of both the tectonic and magmatic processes that cause the extrusion of magma locally and sheds light on the tectonic evolution of the larger region of the back-arc basin as a whole. The volcanic series on Patmos is alkalic, consistent with a back-arc extensional setting, and ranges from trachybasalt to phonolites, trachytes and rhyolites, with SiO2 ranging from 51.6 wt % to 80.5 wt %, K2O ranging from 2 wt % to 11.8 wt % and extrusion ages ranging from 6.59 ± 0.04 (0.14) Ma to 5.17 ± 0.02 (0.11) Ma. Volcanism on Patmos and adjacent Chiliomodi can be understood as a combination of mantle and crustal tectonic processes including the influence of transform faults and rotational crustal forces that also caused the widening of the southern Aegean basin due to two opposite rotational poles in the east and west and rollback of the subducting slab south of Crete.

Funder

Netherlands Research Centre for Integrated Solid Earth Sciences

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3