Fine-scale assessment of cross-boundary wildfire events in the western United States

Author:

Palaiologou PalaiologosORCID,Ager Alan A.,Evers Cody R.,Nielsen-Pincus MaxORCID,Day Michelle A.,Preisler Haiganoush K.

Abstract

Abstract. We report a fine-scale assessment of cross-boundary wildfire events for the western US. We used simulation modeling to quantify the extent of fire exchange among major federal, state, and private land tenures and mapped locations where fire ignitions can potentially affect populated places. We examined how parcel size affects wildfire transmission and partitioned the relative amounts of transmitted fire between human and natural ignitions. We estimated that 85 % of the total predicted wildfire activity, as measured by area burned, originates from four land tenures (Forest Service, Bureau of Land Management, private, and state lands) and 63 % of the total amount results from natural versus human ignitions. On average, one-third of the area burned by predicted wildfires was nonlocal, meaning that the source ignition was on a different land tenure. Land tenures with smaller parcels tended to receive more incoming fire on a proportional basis, while the largest fires were generated from ignitions in national parks, national forests, and public and tribal lands. Among the 11 western states, the amount and pattern of cross-boundary fire varied substantially in terms of which land tenures were mostly exposed, by whom, and to what extent. We also found spatial variability in terms of community exposure among states, and more than half of the predicted structure exposure was caused by ignitions on private lands or within the wildland–urban interface areas. This study addressed gaps in existing wildfire risk assessments that do not explicitly consider cross-boundary fire transmission and do not identify the source of fire. The results can be used by state, federal, and local fire planning organizations to help improve risk mitigation programs.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3