Delimitation of flood areas based on a calibrated a DEM and geoprocessing: case study on the Uruguay River, Itaqui, southern Brazil

Author:

Araújo Paulo Victor N.ORCID,Amaro Venerando E.,Silva Robert M.,Lopes Alexandre B.

Abstract

Abstract. Flooding is a natural disaster which affects thousands of riverside, coastal, and urban communities causing severe damage. River flood mapping is the process of determining inundation extents and depth by comparing historical river water levels with ground surface elevation references. This paper aims to map flood hazard areas under the influence of the Uruguay River, Itaqui (southern Brazil), using a calibration digital elevation model (DEM), historic river level data and geoprocessing techniques. The temporal series of maximum annual level records of the Uruguay River, for the years 1942 to 2017, were linked to the Brazilian Geodetic System using geometric leveling and submitted for descriptive statistical analysis and probability. The DEM was calibrated with ground control points (GCPs) of high vertical accuracy based on post-processed high-precision Global Navigation Satellite System surveys. Using the temporal series statistical analysis results, the spatialization of flood hazard classes on the calibrated DEM was assessed and validated. Finally, the modeling of the simulated flood level was visually compared against the flood area on the satellite image, which were both registered on the same date. The free DEM calibration model indicated high correspondence with GCPs (R2=0.81; p<0.001). The calibrated DEM showed a 68.15 % improvement in vertical accuracy (RMSE = 1.00 m). Five classes of flood hazards were determined: extremely high flood hazard, high flood hazard, moderate flood hazard, low flood hazard, and non-floodable. The flood episodes, with a return time of 100 years, were modeled with a 57.24 m altimetric level. Altimetric levels above 51.66 m have a high potential of causing damage, mainly affecting properties and public facilities in the city's northern and western peripheries. Assessment of the areas that can potentially be flooded can help to reduce the negative impact of flood events by supporting the process of land use planning in areas exposed to flood hazard.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference61 articles.

1. Abreu, R. F., Cunningham, C., Rudorff, C. M., Rudorff, N., Abatan, A. A., Dong, B., Lott, F. C., Tett, S. F. B., and Sparrow, S. N.: Contribution of anthropogenic climate change to April–May 2017 heavy precipitation over the Uruguay river basin, B. Am. Meteorol. Soc., 12, 1–5, https://doi.org/10.1175/BAMS-D-18-0102.1, 2018.

2. Alaghmand, S., Abdullah, R. B., Abustan, I., and Vosoogh, B.: GIS-based River Flood Hazard Mapping in Urban Area (A Case Study in Kayu Ara River Basin, Malaysia), Int. J. Eng. Technol., 2, 488–500, 2010.

3. ANA – Agência Nacional de Águas: Conjuntura dos recursos hídricos no Brasil: regiões hidrográficas brasileiras, Edição Especial, Brasília-DF, p. 163, available at: http://www.snirh.gov.br/portal/snirh/centrais-de-conteudos/conjuntura-dos-recursos-hidricos/regioeshidrograficas2014.pdf (last access: 10 June 2018), 2015.

4. APFM – Associated Programme on Flood Management: Integrated flood management tools series: Flood Mapping, Issue 20, available at: https://library.wmo.int/pmb_ged/ifmts_20.pdf (last access: 11 June 2018), 2013.

5. Araújo, P. V. N., Amaro, V. E.; Alcoforado, A. V. C., and Santos, A. L. S.: Acurácia Vertical e Calibração de Modelos Digitais de Elevação (MDEs) para a Bacia Hidrográfica Piranhas-Açú, Rio Grande do Norte, Brasil, Anuário do Instituto de Geociências – UFRJ, 41, 351–364, https://doi.org/10.11137/2018_1_351_364, 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3