Decadal variations in estimated surface solar radiation over Switzerland since the late 19th century

Author:

Sanchez-Lorenzo A.,Wild M.

Abstract

Abstract. Our knowledge on trends in surface solar radiation (SSR) involves uncertainties due to the scarcity of long-term time series of SSR, especially with records before the second half of the 20th century. Here we study the trends of all-sky SSR from 1885 to 2010 in Switzerland, which have been estimated using a homogenous dataset of sunshine duration series. This variable is shown to be a useful proxy data of all-sky SSR, which can help to solve some of the current open issues in the dimming/brightening phenomenon. All-sky SSR has been fairly stable with little variations in the first half of the 20th century, unlike the second half of the 20th century that is characterized also in Switzerland by a dimming from the 1950s to the 1980s and a subsequent brightening. Cloud cover changes seem to explain the major part of the decadal variability observed in all-sky SSR, at least from 1885 to the 1970s; at this point, a discrepancy in the sign of the trend is visible in the all-sky SSR and cloud cover series from the 1970s to the present. Finally, an attempt to estimate SSR series for clear-sky conditions, based also on sunshine duration records since the 1930s, has been made for the first time. The mean clear-sky SSR series shows no relevant changes between the 1930s to the 1950s, then a decrease, smaller than the observed in the all-sky SSR, from the 1960s to 1970s, and ends with a strong increase from the 1980s up to the present. During the three decades from 1981 to 2010 the estimated clear-sky SSR trends reported in this study are in line with previous findings over Switzerland based on direct radiative flux measurements. Moreover, the signal of the El Chichón and Pinatubo volcanic eruption visible in the estimated clear-sky SSR records further demonstrates the potential to infer aerosol-induced radiation changes from sunshine duration observations.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3