Reducing cost uncertainty in the drivetrain design decision with a focus on the operational phase

Author:

Harzendorf Freia,Schelenz RalfORCID,Jacobs Georg

Abstract

Abstract. In order to identify holistically better drivetrain concepts for onshore wind turbine application, their operational behavior needs to be considered in an early design phase. In this paper, a validated approach for estimating drivetrain-concept-specific unplanned operational effort and risk based on open-access data is presented. Uncertain influencing factors are described with distribution functions. This way, the poor data availability in the early design phase can be used to give an indication of the concept's choice influence on the unplanned operational wind turbine behavior. In order to obtain representative comparisons, a Monte Carlo method is applied. Technical availability and drivetrain-influenced unplanned operational effort are defined as evaluation criteria. The latter is constituted by labor, material and equipment expenses. By calculating the range of fluctuation in the evaluation criteria mean values, this approach offers an indication of the inherent risk in the operational phase induced by the drivetrain concept choice. This approach demonstrates that open-access data or expert estimations are sufficient for comparing different drivetrain concepts over the operational phase in an early design stage when using the right methodology. The approach is applied on the five most common state-of-the-art drivetrain concepts. The comparison shows that among those concepts the drivetrain concept without a gearbox and with a permanent magnet synchronous generator performs the best in terms of absolute drivetrain-influenced unplanned operational effort over the drivetrain's lifetime as well as in terms of the inherent risk for the assumptions made. It furthermore makes it possible to give insights into how the different drivetrain concepts might perform in future applications in terms of unplanned operational effort. Exemplarily the impacts of higher torque density in gearboxes, a change to moment bearings and adjusted coil design in electrically excited generators have been analyzed. This analysis shows that the superiority of synchronous-generator concepts manifested in historic data is not entirely certain in future applications. Concluding, this approach will help to identify holistically better wind turbine drivetrain concepts by being able to estimate the inherent risks and effort in the operational phase.

Publisher

Copernicus GmbH

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Reference49 articles.

1. Andrawus, J.: Maintenance optimization for wind turbines, PhD thesis, Robert Gordon University, 212 pp., Aberdeen, Scottland, 2008.

2. Arabian-Hoseynabadi, H., Tavner, P. J., and Oraee, H.: Reliability comparison of direct-drive and geared-drive wind turbine concepts, Wind Energ., 13, 62–73, https://doi.org/10.1002/we.357, 2010.

3. Berger, W.: Major Component Failure Data & Trends, 12 pp., DNV GL, 2016.

4. Bundesverband Wind Energie: Windindustrie in Deutschland 2020, BWE, Berlin, Germany, 252 pp., 2020.

5. Carroll, J., McDonald, A., Dinwoodie, I., McMillan, D., Revie, M., and Lazakis, I.: Availability, operation and maintenance costs of offshore wind turbines with different drive train configurations, Wind Energ., 20, 361–378, https://doi.org/10.1002/we.2011, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3