1. Bates, J., Moorthi, S., and Higgins, R.: A global multilevel atmospheric model using a vector semi-Lagrangian finite-difference scheme. Part I: Adiabatic formulation, Mon. Weather Rev., 121, 244–263, https://doi.org/10.1175/1520-0493(1993)121<0244:AGMAMU>2.0.CO;2, 1993.
2. Caluwaerts, S., Degrauwe, D., Termonia, P., Voitus, F., Bénard, P., and Geleyn, J.-F.: Importance of temporal symmetry in spatial discretization for geostrophic adjustment in semi-implicit Z-grid schemes, Q. J. Roy. Meteor. Soc., 141, 128–138, https://doi.org/10.1002/qj.2344, 2015.
3. Colella, P. and Woodward, P.: The Piecewise Parabolic Method (PPM) for Gas-Dynamical Simulations, J. Comput. Phys., 54, 174–201, https://doi.org/10.1016/0021-9991(84)90143-8, 1984.
4. Fadeev, R.: Algorithm for Reduced Grid Generation on a Sphere for a Global Finite-Difference Atmospheric Model, Comp. Math. Math. Phys.+, 53, 237–252, https://doi.org/10.1134/S0965542513020073, 2013.
5. Fournier, A., Taylor, M., and Tribbia, J.: The spectral element atmospheric model: High-resolution parallel computation and response to regional forcing, Mon. Weather Rev., 132, 726–748, https://doi.org/10.1175/1520-0493(2004)132<0726:TSEAMS>2.0.CO;2, 2004.