Projected change in atmospheric nitrogen deposition to the Baltic Sea towards 2020
-
Published:2012-03-08
Issue:5
Volume:12
Page:2615-2629
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Geels C.,Hansen K. M.,Christensen J. H.,Ambelas Skjøth C.,Ellermann T.,Hedegaard G. B.,Hertel O.,Frohn L. M.,Gross A.,Brandt J.
Abstract
Abstract. The ecological status of the Baltic Sea has for many years been affected by the high input of both waterborne and airborne nutrients. The focus here is on the airborne input of nitrogen (N) and the projected changes in this input, assuming the new National Emission Ceilings directive (NEC-II), currently under negotiation in the EU, is fulfilled towards the year 2020. With a set of scenario simulations, the Danish Eulerian Hemispheric Model (DEHM) has been used to estimate the development in nitrogen deposition based on present day meteorology combined with present day (2007) or future (2020) anthropogenic emissions. Applying a so-called tagging method in the DEHM model, the contribution from ship traffic and from each of the nine countries with coastlines to the Baltic Sea has been assessed. The annual deposition to the Baltic Sea is estimated to 203 k tonnes N for the present day scenario (2007) and 165 k tonnes N in the 2020 scenario, giving a projected reduction of 38 k tonnes N in the annual load in 2020. This equals a decline in nitrogen deposition of 19%. The results from 20 model runs using the tagging method show that of the total nitrogen deposition in 2007, 52% came from emissions within the bordering countries. By 2020, this is projected to decrease to 48%. For some countries the projected decrease in nitrogen deposition arising from the implementation of the NEC-II directive will contribute significantly to compliance with the reductions agreed on in the provisional reduction targets of the Baltic Sea Action Plan. This underlines the importance of including projections like the current in future updates of the Baltic Sea Action Plan.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference65 articles.
1. Amann, M., Bertok, I., Cofala, J., Heyes, C., Klimont, Z., Rafaj, P., Schöpp, W., and Wagner, F.: National Emission Ceilings for 2020 based on the 2008 Climate & Energy Package. NEC Scenario Analysis Report {#}6, International Institute for Applied System Analysis (IIASA), Laxenburg, Austria, 2008. 2. Andersen, J., Axe, P., Backer, H., Carstensen, J., Claussen, U., Fleming-Lehtinen, V., Järvinen, M., Kaartokallio, H., Knuuttila, S., Korpinen, S., Kubiliute, A., Laamanen, M., Lysiak-Pastuszak, E., Martin, G., Murray, C., Møhlenberg, F., Nausch, G., Norkko, A., and Villnäs, A., Getting the measure of eutrophication in the Baltic Sea: towards improved assessment principles and methods, Biogeochemistry, 106, 137–156, 2011. 3. Bartnicki, J., Semeena, V. S., and Fagerli, H.: Atmospheric deposition of nitrogen to the Baltic Sea in the period 1995–2006, Atmos. Chem. Phys., 11, 10057–10069, https://doi.org/10.5194/acp-11-10057-2011, 2011. 4. Bouwman, A. F., Lee, D. S., Asman, W. A. H., Dentener, F. J., Van der Hoek, K. W., and Olivier, J. G. J.: A global high-resolution emission inventory for ammonia, Global Biochem. C., 11{,} 561–587, 1997. 5. Brandt, J., Christensen, J. H., Frohn, L. M., Palmgren, F., Berkowicz, R., and Zlatev, Z.: Operational air pollution forecasts from European to local scale, Atmos. Environ., 35{,} S91–S98, 2001.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|