Measurement-based modelling of bromine-induced oxidation of mercury above the Dead Sea

Author:

Tas E.,Obrist D.,Peleg M.,Matveev V.,Faïn X.,Asaf D.,Luria M.

Abstract

Abstract. Atmospheric mercury depletion events (AMDEs) outside the polar region – driven by high levels of gaseous Br and BrO (i.e., BrOx) – were observed recently in the warm Dead Sea boundary layer. The efficient oxidation of gaseous elemental mercury (GEM) under temperate conditions by BrOx was unexpected considering that the thermal back dissociation reaction of HgBr is about 2.5 orders of magnitude higher under Dead Sea temperatures compared to polar temperatures, and hence was expected to significantly slow down GEM oxidation under warm temperatures. The goal of this modelling study was to improve understanding of the interaction of reactive bromine and mercury during Dead Sea AMDEs using numerical simulations based on a comprehensive measurement campaign in summer 2009. Our analysis is focused on daytime AMDE when chemical processes dominate concentration changes. Best agreements between simulations and observations were achieved using rate constants for kHg+Br and kHg+BrO of 2.7 × 10−13 cm3 molecule−1 s−1 and 1.5 × 10−13 cm3 molecule−1 s−1, respectively. Our model also predicted that a rate constant kHg+BrO of 5.0 × 10−14 cm3 molecule−1 s−1 may be considered as a minimum, which is higher than most reported values. These rate constants suggest that BrO could be a more efficient oxidant than Br in the troposphere as long as [Br]/[BrO] ratios are smaller than ~0.2 to 0.5. Under Dead Sea conditions, these kinetics demonstrate a high efficiency and central role of BrOx for AMDEs, with relative contributions to GEM depletion of more than ~90%. Unexpectedly, BrO was found to be the dominant oxidant with relative contributions above 80%. The strong contribution of BrO could explain why the efficiency of GEM oxidation at the Dead Sea does not critically depend on Br and, therefore, is comparable to that in cold polar regions. In order to confirm the suggested kinetics, additional studies, particularly for temperature-dependence of rate constants, are required.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3