Impact of spatial proxies on the representation of bottom-up emission inventories: A satellite-based analysis

Author:

Geng GuannanORCID,Zhang Qiang,Martin Randall V.ORCID,Lin JintaiORCID,Huo Hong,Zheng BoORCID,Wang Siwen,He Kebin

Abstract

Abstract. Spatial proxies used in bottom-up emission inventories to derive the spatial distributions of emissions are usually empirical and involve additional levels of uncertainty. Although uncertainties in current emission inventories have been discussed extensively, uncertainties resulting from improper spatial proxies have rarely been evaluated. In this work, we investigate the impact of spatial proxies on the representation of gridded emissions by comparing six gridded NOx emission datasets over China developed from the same magnitude of emissions and different spatial proxies. GEOS-Chem-modeled tropospheric NO2 vertical columns simulated from different gridded emission inventories are compared with satellite-based columns. The results show that differences between modeled and satellite-based NO2 vertical columns are sensitive to the spatial proxies used in the gridded emission inventories. The total population density is less suitable for allocating NOx emissions than nighttime light data because population density tends to allocate more emissions to rural areas. Determining the exact locations of large emission sources could significantly strengthen the correlation between modeled and observed NO2 vertical columns. Using vehicle population and an updated road network for the on-road transport sector could substantially enhance urban emissions and improve the model performance. When further applying industrial gross domestic product (IGDP) values for the industrial sector, modeled NO2 vertical columns could better capture pollution hotspots in urban areas and exhibit the best performance of the six cases compared to satellite-based NO2 vertical columns (slope  =  1.01 and R2 = 0. 85). This analysis provides a framework for information from satellite observations to inform bottom-up inventory development. In the future, more effort should be devoted to the representation of spatial proxies to improve spatial patterns in bottom-up emission inventories.

Funder

European Commission

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3