Tropospheric ozone maxima observed over the Arabian Sea during the pre-monsoon
-
Published:2017-04-18
Issue:8
Volume:17
Page:4915-4930
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Jia Jia, Ladstätter-Weißenmayer Annette, Hou Xuewei, Rozanov AlexeiORCID, Burrows John P.ORCID
Abstract
Abstract. An enhancement of the tropospheric ozone column (TOC) over Arabian Sea (AS) during the pre-monsoon season is reported in this study. The potential sources of the AS spring ozone pool are investigated by use of multiple data sets (e.g., SCIAMACHY Limb-Nadir-Matching TOC, OMI/MLS TOC, TES TOC, MACC reanalysis data, MOZART-4 model and HYSPLIT model). Three-quarters of the enhanced ozone concentrations are attributed to the 0–8 km height range. The main source of the ozone enhancement is considered to be caused by long-range transport of ozone pollutants from India (∼ 50 % contributions to the lowest 4 km, ∼ 20 % contributions to the 4–8 km height range), the Middle East, Africa and Europe (∼ 30 % in total). In addition, the vertical pollution accumulation in the lower troposphere, especially at 4–8 km, was found to be important for the AS spring ozone pool formation. Local photochemistry, on the other hand, plays a negligible role in producing ozone at the 4–8 km height range. In the 0–4 km height range, ozone is quickly removed by wet deposition. The AS spring TOC maxima are influenced by the dynamical variations caused by the sea surface temperature (SST) anomaly during the El Niño period in 2005 and 2010 with a ∼ 5 DU decrease.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference61 articles.
1. Ali, K., Beig, G., Chate, D. M., Momin, G. A., Sahu, S. K., and Safai, P. D.: Sink mechanism for significantly low level of ozone over the Arabian Sea during monsoon, J. Geophys. Res., 114, D17306, https://doi.org/10.1029/2008JD011256, 2009. 2. Beer, R.: TES on the Aura mission: Scientific objectives, measurements, and analysis overview, IEEE T. Geosci. Remote, 44, 1102–1105, 2006. 3. Beer, R., Glavich, T. A., and Rider, D. M.: Tropospheric emission spectrometer for Earth Observing System's Aura satellite, Appl. Optics, 40, 2356–2367, 2001. 4. Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., and Wagner, T.: Megacity emissions and lifetimes of nitrogen oxides probed from space, Science, 333, 1737–1739, https://doi.org/10.1126/science.1207824, 2011. 5. Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: mission objectives and measurement modes, J. Atmos. Sci., 56, 127–150, 1999.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|