Impacts of coal burning on ambient PM<sub>2.5</sub> pollution in China
-
Published:2017-04-03
Issue:7
Volume:17
Page:4477-4491
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Ma Qiao, Cai Siyi, Wang ShuxiaoORCID, Zhao BinORCID, Martin Randall V., Brauer MichaelORCID, Cohen Aaron, Jiang Jingkun, Zhou Wei, Hao Jiming, Frostad Joseph, Forouzanfar Mohammad H., Burnett Richard T.
Abstract
Abstract. High concentration of fine particles (PM2.5), the primary concern about air quality in China, is believed to closely relate to China's large consumption of coal. In order to quantitatively identify the contributions of coal combustion in different sectors to ambient PM2. 5, we developed an emission inventory for the year 2013 using up-to-date information on energy consumption and emission controls, and we conducted standard and sensitivity simulations using the chemical transport model GEOS-Chem. According to the simulation, coal combustion contributes 22 µg m−3 (40 %) to the total PM2. 5 concentration at national level (averaged in 74 major cities) and up to 37 µg m−3 (50 %) in the Sichuan Basin. Among major coal-burning sectors, industrial coal burning is the dominant contributor, with a national average contribution of 10 µg m−3 (17 %), followed by coal combustion in power plants and the domestic sector. The national average contribution due to coal combustion is estimated to be 18 µg m−3 (46 %) in summer and 28 µg m−3 (35 %) in winter. While the contribution of domestic coal burning shows an obvious reduction from winter to summer, contributions of coal combustion in power plants and the industrial sector remain at relatively constant levels throughout the year.
Funder
National Natural Science Foundation of China
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference71 articles.
1. Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: constraints from oxygen isotopes, J. Geophys. Res., 110, D10307, https://doi.org/10.1029/2004JD005659, 2005. 2. Benkovitz, C. M., Scholtz, M. T., Pacyna, J., Tarrasón, L., Dignon, J., Voldner, E. C., Spiro, P. A., Logan, J. A., and Graedel, T. E.: Global gridded inventories of anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res., 101, 29239–29253, https://doi.org/10.1029/96JD00126, 1996. 3. Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B., Fiore, A. M., Li, Q., Liu, H., Mickley, L. J., and Schultz, M.: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23073–23096, https://doi.org/10.1029/2001JD000807, 2001. 4. Bi, X., Feng, Y., Wu, J., Wang, Y., and Zhu, T.: Source apportionment of PM10 in six cities of northern China, Atmos. Environ., 41, 903–912, https://doi.org/10.1016/j.atmosenv.2006.09.033, 2007. 5. BP: Statistical Review of World Energy 2015, available at: http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html, (last access: 16 May 2016), 2015.
Cited by
129 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|