Toward enhanced understanding and projections of climate extremes using physics-guided data mining techniques

Author:

Ganguly A. R.,Kodra E. A.,Agrawal A.,Banerjee A.,Boriah S.,Chatterjee Sn.,Chatterjee So.,Choudhary A.,Das D.,Faghmous J.,Ganguli P.,Ghosh S.,Hayhoe K.,Hays C.,Hendrix W.,Fu Q.,Kawale J.,Kumar D.,Kumar V.,Liao W.,Liess S.ORCID,Mawalagedara R.,Mithal V.,Oglesby R.,Salvi K.,Snyder P. K.,Steinhaeuser K.,Wang D.,Wuebbles D.

Abstract

Abstract. Extreme events such as heat waves, cold spells, floods, droughts, tropical cyclones, and tornadoes have potentially devastating impacts on natural and engineered systems and human communities worldwide. Stakeholder decisions about critical infrastructures, natural resources, emergency preparedness and humanitarian aid typically need to be made at local to regional scales over seasonal to decadal planning horizons. However, credible climate change attribution and reliable projections at more localized and shorter time scales remain grand challenges. Long-standing gaps include inadequate understanding of processes such as cloud physics and ocean–land–atmosphere interactions, limitations of physics-based computer models, and the importance of intrinsic climate system variability at decadal horizons. Meanwhile, the growing size and complexity of climate data from model simulations and remote sensors increases opportunities to address these scientific gaps. This perspectives article explores the possibility that physically cognizant mining of massive climate data may lead to significant advances in generating credible predictive insights about climate extremes and in turn translating them to actionable metrics and information for adaptation and policy. Specifically, we propose that data mining techniques geared towards extremes can help tackle the grand challenges in the development of interpretable climate projections, predictability, and uncertainty assessments. To be successful, scalable methods will need to handle what has been called "big data" to tease out elusive but robust statistics of extremes and change from what is ultimately small data. Physically based relationships (where available) and conceptual understanding (where appropriate) are needed to guide methods development and interpretation of results. Such approaches may be especially relevant in situations where computer models may not be able to fully encapsulate current process understanding, yet the wealth of data may offer additional insights. Large-scale interdisciplinary team efforts, involving domain experts and individual researchers who span disciplines, will be necessary to address the challenge.

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3