Measurements of greenhouse gases and related tracers at Bialystok tall tower station in Poland

Author:

Popa M. E.,Gloor M.,Manning A. C.,Jordan A.,Schultz U.,Haensel F.,Seifert T.,Heimann M.

Abstract

Abstract. Quasi-continuous, in-situ measurements of atmospheric CO2, O2/N2, CH4, CO, N2O, and SF6 have been performed since August 2005 at the tall tower station near Bialystok, in Eastern Poland, from five heights up to 300 m. Besides the in-situ measurements, flask samples are filled approximately weekly and measured at Max-Planck Institute for Biogeochemistry for the same species and, in addition, for H2, Ar/N2 and the stable isotopes 13C and 18O in CO2. The in-situ measurement system was build based on commercially available analysers: a LiCor 7000 for CO2, a Sable Systems "Oxzilla" FC-2 for O2, and an Agilent 6890 gas chromatograph for CH4, CO, N2O and SF6. The system was optimized to run continuously with very little maintenance and to fulfill the precision requirements of the CHIOTTO project. The O2 measurements in particular required special attention in terms of technical setup and quality assurance. The evaluation of the performance after more than three years of operation gave overall satisfactory results, proving that this setup is suitable for long term remote operation with little maintenance. The precision achieved for all species is within or close to the project requirements. The comparison between the in-situ and flask sample results, used to verify the accuracy of the in-situ measurements, showed no significant difference for CO2, O2/N2, CH4 and N2O, and a very small difference for SF6. The same comparison however revealed a statistically significant difference for CO, of about 6.5 ppb, for which the cause could not be fully explained at the moment. From more than three years of data, the main features at Bialystok have been characterized in terms of variability, trends, and seasonal and diurnal variations. CO2 and O2/N2 show large short term variability, and large diurnal signals during the warm seasons, which attenuate with the increase of sampling height. The trends calculated from this dataset, over the period August 2005 to December 2008, are 2.02±0.46 ppm/year for CO2 and −23.2±2.5 per meg/year for O2/N2. CH4, CO and N2O show also higher variability at the lower sampling levels, which in the case of CO is strongly seasonal. Diurnal variations in CH4, CO and N2O mole fractions can be observed during the warm season, due to the periodicity of vertical mixing combined with the diurnal cycle of anthropogenic emissions. We calculated increase rates of 10.1±4.4 ppb/year for CH4, (−8.3)±5.3 ppb/year for CO and 0.67±0.08 ppb/year for N2O. SF6 shows only few events, and generally no vertical gradients, which suggests that there are no significant local sources. A weak SF6 seasonal cycle has been detected, which most probably is due to the seasonality of atmospheric circulation. SF6 increased during the time of our measurement at an average rate of 0.29±0.01 ppt/year.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3