Development of a bioaerosol single particle detector (BIO IN) for the fast ice nucleus chamber FINCH
Author:
Bundke U.,Reimann B.,Nillius B.,Jaenicke R.,Bingemer H.
Abstract
Abstract. In this work we present the setup and first tests of our new BIO IN detector. This detector is designed to classify atmospheric ice nuclei (IN) for their biological content. Biological material is identified via its auto-fluorescence (intrinsic fluorescence) after irradiation with UV radiation. Ice nuclei are key substances for precipitation development via the Bergeron–Findeisen process. The level of scientific knowledge regarding origin and climatology (temporal and spatial distribution) of IN is very low. Some biological material is known to be active as IN even at relatively high temperatures of up to –2°C (e.g. pseudomonas syringae bacteria). These biological IN could have a strong influence on the formation of clouds and precipitation. We have designed the new BIO IN sensor to analyze the abundance of IN of biological origin. The instrument will be flown on one of the first missions of the new German research aircraft ''HALO'' (High Altitude and LOng Range).
Publisher
Copernicus GmbH
Reference31 articles.
1. Ariya, P. A. and Amyot, M.: New directions: The role of bioaerosols in atmospheric chemistry and physics, Atmos. Environ., 38, 1231–1232, 2004. 2. Bundke, U., Nillius, B., Jaenicke, R., Wetter, T., Klein, H., and Bingemer, H.: The fast ice nucleus chamber FINCH, Atmos. Res., 90, 180–186, 2008. 3. Deguillaume, L., Leriche, M., Amato, P., Ariya, P. A., Delort, A.-M., Pöschl, U., Chaumerliac, N., Bauer, H., Flossmann, A. I., and Morris, C. E.: Microbiology and atmospheric processes: chemical interactions of primary biological aerosols, Biogeosciences, 5, 1073–1084, 2008. 4. Demchenko, A. P.: Ultraviolet Spectroscopy of Proteins, Springer, Berlin, London, p. 312, 1986. 5. Diehl, K., Quick, C., Matthias-Maser, S., Mitra, S. K., and Jaenicke, R.: The ice nucleating ability of pollen: Part I: Laboratory studies in deposition and condensation freezing modes, Atmos. Res., 58, 75–87, 2001.
|
|