Pilanesbergite: a new rock-forming mineral occurring in nepheline syenite from the Pilanesberg Alkaline Complex, South Africa

Author:

Dal Bo FabriceORCID,Friis Henrik,Elburg Marlina A.,Hatert Frédéric,Andersen Tom

Abstract

Abstract. The new mineral pilanesbergite, with the ideal formula Na2Ca2Fe2Ti2(Si2O7)2O2F2, was found in a nepheline syenite, locally known as green foyaite, from the Pilanesberg Complex located in the North West Province of South Africa. Pilanesbergite occurs in green foyaite in association, and partly intergrown, with aegirine. The two minerals share an assemblage of inclusions, comprising euhedral nepheline, titanite and minor sodalite. Pilanesbergite belongs to the wöhlerite group and is isomorphic with låvenite, normandite and madeiraite. It is related to these species through the homovalent chemical substitutions Mn2+↔Fe2+ and Zr4+↔Ti4+. The empirical formula calculated on the basis of 18 anions is Na2.00(Ca1.74Na0.26)Σ2.00(Fe1.00Mn0.52Ca0.49Zr0.05)Σ2.06(Ti1.69Zr0.14Mg0.09Nb0.08)Σ2.00(Si2O7)2.00O1.84F2.16 (Z=2). The new mineral is translucent with a brown orange colour and a brownish streak. The Mohs hardness is estimated between 5 and 6 by comparison with låvenite, and no cleavage is observed. Measured and calculated densities are Dmeas=3.47 g cm−3 and Dcalc=3.40 g cm−3. In the thin section the pleochroism is strong, between straw yellow and orange red, while in immersion the strong pleochroism is observed between light yellow (α) and yellowish orange (γ). The crystals are optically biaxial (+) with α=1.743(3), β=1.768(3), γ=1.795(5) and a 2 V angle close to 90∘. The crystal structure is monoclinic (P21/a), with the unit-cell parameters a=10.7811(2), b=9.7836(1), c=7.0348(1) Å, β=108.072(2)∘ and V=705.41(2) Å3, and has been refined to R1=2.06 %. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (h k l)] are 3.219 (60) (310), 2.851 (100) (12-2), 2.802 (51) (320), 2.743 (27) (22-2), 2.423 (19) (40-2) and 1.723 (19) (44-2). Pilanesbergite formed under relatively reducing conditions from an agpaitic nepheline syenite magma that had evolved by fractional crystallization mainly of aegirine. Further crystallization of arfvedsonite caused an increase in oxygen fugacity and a change towards higher Mn/Mn+Fe of the magma, causing a change of mineral composition from pilanesbergite towards normandite.

Publisher

Copernicus GmbH

Subject

Pulmonary and Respiratory Medicine,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3