Reviews and syntheses: Dams, water quality and tropical reservoir stratification

Author:

Winton Robert ScottORCID,Calamita ElisaORCID,Wehrli BernhardORCID

Abstract

Abstract. The impact of large dams is a popular topic in environmental science, but the importance of altered water quality as a driver of ecological impacts is often missing from such discussions. This is partly because information on the relationship between dams and water quality is relatively sparse and fragmentary, especially for low-latitude developing countries where dam building is now concentrated. In this paper, we review and synthesize information on the effects of damming on water quality with a special focus on low latitudes. We find that two ultimate physical processes drive most water quality changes: the trapping of sediments and nutrients, and thermal stratification in reservoirs. Since stratification emerges as an important driver and there is ambiguity in the literature regarding the stratification behavior of water bodies in the tropics, we synthesize data and literature on the 54 largest low-latitude reservoirs to assess their mixing behavior using three classification schemes. Direct observations from literature as well as classifications based on climate and/or morphometry suggest that most, if not all, low-latitude reservoirs will stratify on at least a seasonal basis. This finding suggests that low-latitude dams have the potential to discharge cooler, anoxic deep water, which can degrade downstream ecosystems by altering thermal regimes or causing hypoxic stress. Many of these reservoirs are also capable of efficient trapping of sediments and bed load, transforming or destroying downstream ecosystems, such as floodplains and deltas. Water quality impacts imposed by stratification and sediment trapping can be mitigated through a variety of approaches, but implementation often meets physical or financial constraints. The impending construction of thousands of planned low-latitude dams will alter water quality throughout tropical and subtropical rivers. These changes and associated environmental impacts need to be better understood by better baseline data and more sophisticated predictors of reservoir stratification behavior. Improved environmental impact assessments and dam designs have the potential to mitigate both existing and future potential impacts.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3