Sensitivities to biological aerosol particle properties and ageing processes: potential implications for aerosol–cloud interactions and optical properties
-
Published:2021-03-11
Issue:5
Volume:21
Page:3699-3724
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zhang MinghuiORCID, Khaled Amina, Amato Pierre, Delort Anne-Marie, Ervens BarbaraORCID
Abstract
Abstract. Primary biological aerosol particles (PBAPs), such as bacteria, viruses, fungi, and pollen, represent a small fraction of the total aerosol
burden. Based on process model studies, we identify trends in the relative importance of PBAP properties, e.g., number concentration, diameter,
hygroscopicity, surface tension, and contact angle, for their aerosol–cloud interactions and optical properties. While the number concentration of PBAPs likely does not affect total cloud condensation nuclei (CCN) concentrations globally, small changes in the hygroscopicity of submicron PBAPs might affect their CCN ability and thus their inclusion into clouds. Given that PBAPs are highly efficient atmospheric ice nuclei (IN) at T > −10 ∘C, we suggest that small changes in their sizes or surface properties due to chemical, physical, or biological processing might translate into large impacts on ice initiation in clouds. Predicted differences in the direct interaction of PBAPs with radiation can be equally large between different species of the same PBAP type and among different PBAP types. Our study shows that not only variability of PBAP types but also their physical, chemical, and biological ageing processes might alter their CCN and IN activities to affect their aerosol–cloud interactions and optical properties. While these properties and processes likely affect radiative forcing only on small spatial and temporal scales, we highlight their potential importance for PBAP survival, dispersion, and transport in the atmosphere.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference195 articles.
1. Akbari, S., Abdurahman, N. H., Yunus, R. M., Fayaz, F., and Alara, O. R.:
Biosurfactants – a new frontier for social and environmental safety: a mini review, Biotechnol. Res. Innov. Biotechnol. Res. Innov., 2, 81–90, https://doi.org/10.1016/j.biori.2018.09.001, 2018. 2. Amato, P., Joly, M., Besaury, L., Oudart, A., Taib, N., Moné, A. I., Deguillaume, L., Delort, A. M., and Debroas, D.: Active microorganisms thrive among extremely diverse communities in cloud water, PLoS One, 12, e0182869, https://doi.org/10.1371/journal.pone.0182869, 2017. 3. Andrews, E., Sheridan, P. J., Fiebig, M., McComiskey, A., Ogren, J. A., Arnott, P., Covert, D., Elleman, R., Gasparini, R., Collins, D., Jonsson, H., Schmid, B., and Wang, J.: Comparison of methods for deriving aerosol asymmetry parameter, J. Geophys. Res.-Atmos., 111, D05S04, https://doi.org/10.1029/2004JD005734, 2006. 4. Arakawa, E. T., Tuminello, P. S., Khare, B. N., and Milham, M. E.:
Optical properties of Erwinia herbicola bacteria at 0.190–2.50 µm,
Biopolymers, 72, 391–398, https://doi.org/10.1002/bip.10438, 2003. 5. Ariya, P. A., Sun, J., Eltouny, N. A., Hudson, E. D., Hayes, C. T., and Kos, G.: Physical and chemical characterization of bioaerosols – Implications for nucleation processes, Int. Rev. Phys. Chem., 28, 1–32, https://doi.org/10.1080/01442350802597438, 2009.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|