Sensitivity of mixed-phase moderately deep convective clouds to parameterizations of ice formation – an ensemble perspective

Author:

Miltenberger Annette K.ORCID,Field Paul R.

Abstract

Abstract. The formation of ice in clouds is an important processes in mixed-phase and ice-phase clouds. Yet, the representation of ice formation in numerical models is highly uncertain. In the last decade, several new parameterizations for heterogeneous freezing have been proposed. However, it is currently unclear what the effect of choosing one parameterization over another is in the context of numerical weather prediction. We conducted high-resolution simulations (Δx=250 m) of moderately deep convective clouds (cloud top ∼-18 ∘C) over the southwestern United Kingdom using several formulations of ice formation and compared the resulting changes in cloud field properties to the spread of an initial condition ensemble for the same case. The strongest impact of altering the ice formation representation is found in the hydrometeor number concentration and mass mixing ratio profiles. While changes in accumulated precipitation are around 10 %, high precipitation rates (95th percentile) vary by 20 %. Using different ice formation representations changes the outgoing short-wave radiation by about 2.9 W m−2 averaged over daylight hours. The choice of a particular representation for ice formation always has a smaller impact then omitting heterogeneous ice formation completely. Excluding the representation of the Hallett–Mossop process or altering the heterogeneous freezing parameterization has an impact of similar magnitude on most cloud macro- and microphysical variables with the exception of the frozen hydrometeor mass mixing ratios and number concentrations. A comparison to the spread of cloud properties in a 10-member high-resolution initial condition ensemble shows that the sensitivity of hydrometeor profiles to the formulation of ice formation processes is larger than sensitivity to initial conditions. In particular, excluding the Hallett–Mossop representation results in profiles clearly different from any in the ensemble. In contrast, the ensemble spread clearly exceeds the changes introduced by using different ice formation representations in accumulated precipitation, precipitation rates, condensed water path, cloud fraction, and outgoing radiation fluxes.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3