Large-volume air sample system for measuring <sup>34</sup>S∕<sup>32</sup>S isotope ratio of carbonyl sulfide

Author:

Kamezaki Kazuki,Hattori ShoheiORCID,Bahlmann EnnoORCID,Yoshida NaohiroORCID

Abstract

Abstract. Knowledge related to sulfur isotope ratios of carbonyl sulfide (OCS or COS), the most abundant atmospheric sulfur species, remains scarce. An earlier method developed for sulfur isotopic analysis for OCS using S+ fragmentation by an isotope ratio mass spectrometer is inapplicable for ambient air samples because of the large samples required (approx. 500 L of 500 pmol mol−1 OCS). To overcome this difficulty, herein we present a new sampling system for collecting approximately 10 nmol of OCS from ambient air coupled with a purification system. Salient system features are (i) accommodation of samples up to 500 L (approx. 10 nmol) of air at 5 L min−1; (ii) portability of adsorption tubes (1∕4 in. (0.64 cm) outer diameter, 17.5 cm length, approximately 1.4 cm3 volume) for preserving the OCS amount and δ34S(OCS) values at −80 ∘C for up to 90 days and 14 days; and (iii) purification OCS from other compounds such as CO2. We tested the OCS collection efficiency of the systems and sulfur isotopic fractionation during sampling. Results show precision (1σ) of δ34S(OCS) values as 0.4 ‰ for overall procedures during measurements for atmospheric samples. Additionally, this report presents diurnal variation of δ34S(OCS) values collected from ambient air at the Suzukakedai campus of the Tokyo Institute of Technology located in Yokohama, Japan. The observed OCS concentrations and δ34S(OCS) values were, respectively, 447–520 pmol mol−1 and from 10.4 ‰ to 10.7 ‰ with a lack of diurnal variation. The observed δ34S(OCS) values in ambient air differed greatly from previously reported values of δ34S(OCS) = (4.9±0.3) ‰ for compressed air collected at Kawasaki, Japan, presumably because of degradation of OCS in cylinders and collection processes for that sample. The difference of atmospheric δ34S(OCS) values between 10.5 ‰ in Japan (this study) and ∼13 ‰ recently reported in Israel or the Canary Islands indicates that spatial and temporal variation of δ34S(OCS) values is expected due to a link between anthropogenic activities and OCS cycles. The system presented herein is useful for application of δ34S(OCS) for investigation of OCS sources and sinks in the troposphere to elucidate its cycle.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3