A new multicopter-based unmanned aerial system for pollen and spores collection in the atmospheric boundary layer

Author:

Crazzolara Claudio,Ebner Martin,Platis AndreasORCID,Miranda TatianaORCID,Bange JensORCID,Junginger AnnettORCID

Abstract

Abstract. The application of a new particle collection system (PCS) developed in-house and operated on board a commercially available multicopter unmanned aerial vehicle (UAV) is presented as a new unmanned aerial system (UAS) approach for in situ measurement of the concentration of aerosol particles such as pollen grains and spores in the atmospheric boundary layer (ABL). A newly developed impactor is used for high-efficiency particle extraction on board the multicopter UAV. An airflow volume of 0.2 m3 min−1 through the impactor is provided by a battery-powered blower and measured with an on-board mass flow sensor. A bell-mouth-shaped air inlet of the PCS is arranged and oriented on the multicopter UAV to provide substantial isokinetic sampling conditions by advantageously using the airflow pattern generated by the propellers of the multicopter UAV. More than 30 aerosol particle collection flights were carried out near Tübingen in March 2017 at altitudes of up to 300 m above ground level (a.g.l.), each with a sampled air volume of 2 m3. Pollen grains and spores of various genera, as well as large (>20 µm) opaque particles and fine dust particles, were collected, and specific concentrations of up to 100 particles per m3 were determined by visual microscopic analysis. The pollen concentration values measured with the new UAS match well with the pollen concentration data published by the Stiftung Deutscher Polleninformationsdienst (PID) and by MeteoSwiss. A major advantage of the new multicopter-based UAS is the possibility of the identification of collected aerosol particles and the measurement of their concentration with high temporal and spatial resolutions, which can be used inter alia to improve the database for modelling the propagation of aerosol particles in the ABL.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3