Quantitative capabilities of STXM to measure spatially resolved organic volume fractions of mixed organic ∕ inorganic particles

Author:

Fraund MatthewORCID,Park Tim,Yao Lin,Bonanno Daniel,Pham Don Q.,Moffet Ryan C.

Abstract

Abstract. Scanning transmission X-ray microscopy coupled with near-edge X-ray absorption and fine structure (STXM-NEXAFS) spectroscopy can be used to characterize the morphology and composition of aerosol particles. Here, two inorganic ∕ organic systems are used to validate the calculation of organic volume fraction (OVF) and determine the level of associated error by using carbon K-edge STXM data at 278, 285.4, 288.6, and 320 eV. Using the mixture of sodium chloride and sucrose as one system and ammonium sulfate and sucrose as another, three solutions were made with 10:1, 1:1, and 1:10 mass ratios (inorganic to organic). The OVFs of the organic-rich aerosols of both systems deviated from the bulk OVF by less than 1%, while the inorganic-rich aerosols deviated by approximately 1 %. Aerosols from the equal mass mixture deviated more (about 4 %) due to thick inorganic regions exceeding the linear range of Beer's law. These calculations were performed after checking the data for poor image alignment, defocusing issues, and particles too thick to be analyzed. The potential for systematic error in the OVF calculation was also tested by assuming the incorrect composition. There is a small (about 0.5 %) OVF difference if the organic is erroneously assumed to be adipic acid rather than the known organic, sucrose. A much larger difference (up to 25 %) is seen if sodium chloride is assumed instead of ammonium sulfate. These results show that the OVF calculations are fairly insensitive to the organic while being much more sensitive to the choice of inorganic.

Funder

Biological and Environmental Research

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3