The AutoICE Challenge

Author:

Stokholm Andreas,Buus-Hinkler JørgenORCID,Wulf ToreORCID,Korosov AntonORCID,Saldo RobertoORCID,Pedersen Leif ToudalORCID,Arthurs DavidORCID,Dragan Ionut,Modica Iacopo,Pedro Juan,Debien Annekatrien,Chen XinweiORCID,Patel Muhammed,Cantu Fernando Jose Pena,Turnes Javier Noa,Park Jinman,Xu Linlin,Scott Katharine Andrea,Clausi David Anthony,Fang Yuan,Jiang Mingzhe,Taleghanidoozdoozan Saeid,Brubacher Neil CurtisORCID,Soleymani ArminaORCID,Gousseau Zacharie,Smaczny Michał,Kowalski Patryk,Komorowski Jacek,Rijlaarsdam David,van Rijn Jan Nicolaas,Jakobsen Jens,Rogers Martin Samuel JamesORCID,Hughes Nick,Zagon Tom,Solberg Rune,Longépé Nicolas,Kreiner Matilde Brandt

Abstract

Abstract. Mapping sea ice in the Arctic is essential for maritime navigation, and growing vessel traffic highlights the necessity of the timeliness and accuracy of sea ice charts. In addition, with the increased availability of satellite imagery, automation is becoming more important. The AutoICE Challenge investigates the possibility of creating deep learning models capable of mapping multiple sea ice parameters automatically from spaceborne synthetic aperture radar (SAR) imagery and assesses the current state of the automatic-sea-ice-mapping scientific field. This was achieved by providing the tools and encouraging participants to adopt the paradigm of retrieving multiple sea ice parameters rather than the current focus on single sea ice parameters, such as concentration. The paper documents the efforts and analyses, compares, and discusses the performance of the top-five participants’ submissions. Participants were tasked with the development of machine learning algorithms mapping the total sea ice concentration, stage of development, and floe size using a state-of-the-art sea ice dataset with dual-polarised Sentinel-1 SAR images and 22 other relevant variables while using professionally labelled sea ice charts from multiple national ice services as reference data. The challenge had 129 teams representing a total of 179 participants, with 34 teams delivering 494 submissions, resulting in a participation rate of 26.4 %, and it was won by a team from the University of Waterloo. Participants were successful in training models capable of retrieving multiple sea ice parameters with convolutional neural networks and vision transformer models. The top participants scored best on the total sea ice concentration and stage of development, while the floe size was more difficult. Furthermore, participants offered intriguing approaches and ideas that could help propel future research within automatic sea ice mapping, such as applying high downsampling of SAR data to improve model efficiency and produce better results.

Funder

European Space Agency

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Operational SAR-Based Sea ICE Concentration Products for Copernicus Marine Service;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3