Molecular cloning, sequence characterization, and tissue expression analysis of three water buffalo (<i>Bubalus bubalis</i>) genes – <i>ST6GAL1</i>, <i>ST8SIA4</i>, and <i>SLC35C1</i>

Author:

Song Shen,Ou-Yang Yina,Huo Jinlong,Zhang Yongyun,Yu Changlin,Liu Minhui,Teng Xiaohong,Miao Yongwang

Abstract

Abstract. Recent studies have shown that ST6 beta-galactosamide alpha-2,6-sialyltransferase 1 (ST6GAL1), ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 4 (ST8SIA4), and solute carrier family 35, member C1 (SLC35C1) play essential roles in the metabolism of milk glycoconjugates in mammals. However, studies on their coding genes in water buffalo have not been reported. In the present study, cloning and sequencing showed that the coding sequences (CDSs) of buffalo ST6GAL1, ST8SIA4, and SLC35C1 were 1218, 1080, and 1095 bp in length, which encoded a precursor protein composed of 405, 359, and 364 amino acids, respectively. The deduced sequences of these three proteins in turn showed 97.6–98.5, 98.6–99.7, and 97.8–99.2 % similarities with other bovine species. Both buffalo ST6GAL1 and ST8SIA4 were predicted to be a member of glycosyltransferase family 29 and were all hydrophilicity proteins functioning in the Golgi apparatus. Buffalo SLC35C1 was a hydrophobic membrane protein located in the Golgi membrane, containing a TPT domain that is found in a number of sugar phosphate transporters. In addition, semi-quantitative RT-PCR analysis in 13 lactating buffalo tissues revealed that the ST6GAL1 and ST8SIA4 were expressed in 9 tissues, while SLC35C1 was expressed in 11 tissues. The expression levels of these three genes in the mammary gland were significantly higher in lactating than in non-lactating stage. Collectively, our data indicate that ST6GAL1, ST8SIA4, and SLC35C1 are potentially involved in the process of buffalo lactation.

Publisher

Copernicus GmbH

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3