Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes
Author:
Jones G. S.,Christidis N.,Stott P. A.
Abstract
Abstract. Past research has shown that the dominant influence on recent global climate changes is from anthropogenic greenhouse gas increases with implications for future increases in global temperatures. One mitigation proposal is to reduce black carbon aerosol emissions. How much warming can be offset by the aerosol's control is unclear, especially as its influence on past climate has not been previously unambiguously detected. In this study observations of near-surface warming over the last century are compared with simulations using a climate model, HadGEM1. In the simulations black carbon, from fossil fuel and bio-fuel sources (fBC), produces a positive radiative forcing of about + 0.25 Wm−2 over the 20th century, compared with a little under + 2.5 Wm−2 for well mixed greenhouse gases. A simulated warming of global mean near-surface temperatures over the twentieth century from fBC of 0.14 ± 0.1 K compares with 1.06 ± 0.07 K from greenhouse gases, -0.58 ± 0.10 K from anthropogenic aerosols, ozone and land use changes and 0.09 ± 0.09 K from natural influences. Using a detection and attribution methodology, the observed warming since 1900 has detectable influences from anthropogenic and natural factors. Fossil fuel and bio-fuel black carbon is found to have a detectable contribution to the warming over the last 50 years of the 20th century, although the results are sensitive to a number of analysis choices, and fBC is not detected for the later fifty year period ending in 2006. The attributed warming of fBC was found to be consistent with the warming from the unscaled simulation. This study suggests that there is a possible significant influence from fBC on global temperatures, but its influence is small compared to that from greenhouse gas emissions.
Publisher
Copernicus GmbH
Reference94 articles.
1. Allen, M. R. and Stott, P. A.: Estimating signal amplitudes in optimal fingerprinting – Part I: Theory, Clim. Dynam., 21, 477–491, 2003. 2. Andreae, M. O., Jones, C. D., and Cox, P. M.: Strong present-day aerosol cooling implies a hot future, Nature, 435, 1187–1190, 2005. 3. Barnett, T. P., Hegerl, G. C., Santer, B., and Taylor, K.: The potential effect of GCM uncertainties and internal atmospheric variability on anthropogenic signal detection, J. Climate, 11, 659–675, 1998. 4. Bellouin, N., Boucher, O., Haywood, J., Johnson, C., Jones, A., Rae, J., and Woodward, S.: Improved representation of aerosols for HadGEM2, Tech. Rep. HCTN 73, Hadley Centre, Met Office, available at: http://www.metoffice.gov.uk/publications/HCTN/ , 2007. 5. Bellouin, N., Jones, A., and Haywood, J., and Christopher, S. A.: Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model, J. Geophys. Res., 113, D10205, https://doi.org/10.1029/2007JD009385, 2008.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|