Combining visible and infrared radiometry and lidar data to test ice clouds optical properties

Author:

Bozzo A.,Maestri T.,Rizzi R.

Abstract

Abstract. Measurements taken during the 2003 Pacific THORPEX Observing System Test (P-TOST) by the MODIS Airborne Simulator (MAS), the Scanning High-resolution Interferometer Sounder (S-HIS) and the Cloud Physics Lidar (CPL) are compared to simulations performed with a line-by-line and multiple scattering modeling methodology (LBLMS). Formerly used for infrared hyper-spectral data analysis, LBLMS has been extended to the visible and near infrared with the inclusion of surface bi-directional reflectance properties. A number of scenes are evaluated: two clear scenes, one with nadir geometry and one cross-track encompassing sun glint, and three cloudy scenes, all with nadir geometry. CPL data is used to estimate the particulate optical depth at 532 nm for the clear and cloudy scenes. Cloud optical depth is also retrieved from S-HIS infrared window radiances, and it agrees with CPL values, to within natural variability. MAS data are simulated convolving high resolution radiances. The paper discusses the results of the comparisons for the clear cases and for the three cloudy cases. LBLMS clear simulations agree with MAS data to within 20% in the shortwave (SW) and near infrared (NIR) spectrum and within 2 K in the infrared (IR) range. It is shown that cloudy sky simulations using cloud parameters retrieved from IR radiances systematically underestimate the measured radiance in the SW and NIR by nearly 50%, although the IR retrieved optical thickness agree with same measured by CPL. MODIS radiances measured from Terra are also compared to LBLMS simulations in cloudy conditions using retrieved cloud optical depth and effective radius from MODIS, to understand the origin for the observed discrepancies. It is shown that the simulations agree, to within natural variability, with measurements in selected MODIS SW bands. The paper dwells on a possible explanation of these contraddictory results, involving the phase function of ice particles in the shortwave.

Publisher

Copernicus GmbH

Reference46 articles.

1. Amorati, R. and Rizzi, R.: Radiances simulated in the presence of clouds by use of a fast radiative transfer model and a multiple-scattering scheme, Appl. Optics, 41, 1604–1614, 2002.

2. Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., and Shettle, E. P.: AFGL Atmospheric constituent profiles (0–120 km), Tech. rep., Air Force Geophysics Laboratory, Optical Physics Division, Hanscom AFB, aFGL-TR 86-0110, 1986.

3. Baran, A. J.: A review of the light scattering properties of cirrus, J. Quant. Spectrosc. Ra., 110, 1239–1260, 2009.

4. Baum, B. A., Heymsfield, A. J., Yang, P., and Bedka, S.: Bulk scattering properties for the remote sensing of ice clouds. Part {I}: Microphysical data and models, J. Appl. Meteorol., 44, 1885–1895, 2005.

5. Bozzo, A.: Atmospheric radiative transfer in multiple scattering conditions. Application to NWP models, Ph.D. thesis, University of Bologna, Bologna, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3