Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact
Author:
Wang T.,Nie W.,Gao J.,Xue L. K.,Gao X. M.,Wang X. F.,Qiu J.,Poon C. N.,Meinardi S.,Blake D.,Ding A. J.,Chai F. H.,Zhang Q. Z.,Wang W. X.
Abstract
Abstract. This paper presents the first results of the atmospheric measurements of trace gases and aerosols at three surface sites in and around Beijing before and during the 2008 Olympics. We focus on secondary pollutants including ozone, fine sulfate and nitrate, and the contribution of regional sources in summer 2008. The results reveal different responses of secondary pollutants to the control measures from primary pollutants. Ambient concentrations of vehicle-related nitrogen oxides (NOx) and volatile organic compounds (VOCs) at an urban site dropped by 25% and 20–45% in the first two weeks after full control was put in place, but the levels of ozone, sulfate and nitrate in PM2.5 increased by 16%, 64%, 37%, respectively, compared to the period prior to the full control; wind data and back trajectories indicated the contribution of regional pollution from the North China Plain. Air quality (for both primary and secondary pollutants) improved significantly during the Games, which were also associated with the changes in weather conditions (prolonged rainfall, decreased temperature, and more frequent air masses from clean regions). A comparison of the ozone data at three sites on eight ozone-pollution days, when the air masses were from the southeast-south-southwest sector, showed that regional pollution sources contributed 34%–88% to the peak ozone concentrations in urban Beijing. Ozone production efficiencies at two sites were low (~3 ppbv/ppbv), indicating that ozone formation was being controlled by VOCs. Compared with data collected in 2005 at a downwind site, the concentrations of ozone, sulfur dioxide (SO2), total sulfur (SO2+PM2.5 sulfate), carbon monoxide (CO), reactive aromatics (toluene and xylenes) sharply decreased (by 8–64%) in 2008, but no significant changes were observed for the concentrations of PM2.5, fine sulfate, total odd reactive nitrogen (NOy), and longer lived alkanes and benzene. We suggest that these results indicate the success of the government's efforts in reducing emissions of SO2, CO, and VOCs in Beijing. However, further control of regional emissions is needed for significant reductions of ozone and fine particulate pollution in Beijing.
Publisher
Copernicus GmbH
Reference32 articles.
1. An, X., Zhu, T., Wang, Z., Li, C., and Wang, Y.: A modeling analysis of a heavy air pollution episode occurred in Beijing, Atmos. Chem. Phys., 7, 3103–3114, https://doi.org/10.5194/acp-7-3103-2007, 2007. 2. Cermak, J. and Knutti, R.: Beijing Olympics as an aerosol field experiment, Geophys. Res. Lett., 36, L10806, https://doi.org/10.1029/2009GL038572, 2009. 3. Chen, D. S., Cheng, S. Y., Liu, L., Chen, T., and Guo, X. R.: An integrated MM5-CMAQ modeling approach for assessing trans-boundary PM10 contribution to the host city of 2008 Olympic summer games – Beijing, China, Atmos. Environ., 41(6), 1237–1250, 2007. 4. Chou, C. C. K., Tsai, C. Y., Shiu, C. J., Liu, S. C., and Zhu, T.: Measurement of NOy during Campaign of Air Quality Research in Beijing 2006 (CAREBeijing-2006): Implications for the ozone production efficiency of NOx, J. Geophys. Res.-Atmos., 114, D00G01, https://doi.org/10.1029/2008JD010446, 2009. 5. Colman, J. J., Swanson, A. L., Meinardi, S., Sive, B. C., Blake, D. R., and Rowland, F. S.: Description of the analysis of a wide range of volatile organic compounds in whole air samples collected during PEM-Tropics A and B, Anal. Chem., 73(15), 3723–3731, 2001.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|