Aerosol dynamics in the Copenhagen urban plume during regional transport

Author:

Wang F.,Roldin P.,Massling A.,Kristensson A.,Swietlicki E.,Fang D.,Ketzel M.

Abstract

Abstract. Aerosol particles in the submicrometer size range (PM1) have serious impacts on human health and climate. This work aims at studying the processes relevant for physical particle properties in and downwind Copenhagen and evaluating the capability of a detailed aerosol dynamics and chemistry model (ADCHEM) to describe the submicrometer aerosol dynamics in a complex urbanized region, subjected to a variety of important anthropogenic sources. The study area is the Oresund Region with Copenhagen (about 1.8 million people) as the major city, including the strait separating Denmark and Sweden with intense ship traffic. Modeled aerosol particle number size distributions and NOx concentrations are evaluated against ground-based measurements from two stations in the Copenhagen area in Denmark and one station in southern Sweden. The measured and modeled increments in NOx concentrations from rural background to the urban area showed satisfactory agreement, indicating that the estimated NOx emissions and modeled atmospheric dispersion are reasonable. For three out of five case studies, the modeled particle number concentrations and size distributions are in satisfactory agreement with the measurements at all stations along the trajectories. For the remaining cases the model significantly underestimates the particle number concentration over Copenhagen, but reaches acceptable agreement with the measurements at the downwind background station in Sweden. The major causes for this were identified as being the lack of spatial resolution in the meteorological data in describing boundary layer mixing heights and the uncertainty in the exact air mass trajectory path over Copenhagen. In addition, particle emission factors may also have been too low. It was shown that aerosol dynamics play a minor role from upwind to urban background, but are important 1–2 h downwind the city. Real-world size-resolved traffic number emission factors which take into account the initial ageing in the street canyon can be used to model traffic emissions in urban plume studies.

Publisher

Copernicus GmbH

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3