Global and regional trends in aerosol optical depth based on remote sensing products and pollutant emission estimates between 2000 and 2009

Author:

de Meij A.,Pozzer A.,Lelieveld J.

Abstract

Abstract. This study evaluates global and regional aerosol optical depth (AOD) trends in view of aerosol (precursor) emission changes between 2000 and 2009. We use AOD products from MODIS, MISR and AERONET, and emission estimates from the EMEP, REAS and IPCC inventories. First we compare trends in global Level 3 AOD products of MODIS, MISR and AERONET (Level 2). We find generally negative trends over Europe and North America, whereas over South and East Asia they are mostly positive. The negative trends over parts of Europe and North-East America appear to be significant. Second, we analyze MODIS Level 2 AODs for three selected regions with good data coverage (Central Mediterranean, North-East America and East Asia) and compare with Level 3 products. This corroborates that the 2000–2009 AOD trend over the Central Mediterranean is negative and corresponds well with the MODIS Level 3 analysis. Also for North-East America the trend is generally negative and in agreement with MODIS Level 3 products. For East Asia the trends derived from Level 2 products are mostly positive and correspond with the MODIS Level 3 results. Over Europe, the trends in aerosol single scattering albedo, as derived from MISR data, appear to be positive (declining solar radiation absorption), whereas this is not the case over the USA, though these data are not yet validated. Third we compare trends in AOD with emission changes of SO2, NOx, NH3 and black carbon. We associate the downward trends in AOD over Europe and North America with decreasing emissions of SO2, NOx, and other criteria pollutants, and consequently declining aerosol concentrations. Over East Asia the MODIS Level 2 trends are generally positive, consistent with increasing pollutant emissions by fossil energy use and growing industrial and urban activities. It appears that SO2 emission changes dominate the AOD trends, although especially in Asia NOx emissions may become increasingly important. Our results suggest that solar brightening due to decreasing SO2 emissions and resulting downward AOD trends over Europe may have weakened in the 2000s compared to the 1990s.

Publisher

Copernicus GmbH

Reference65 articles.

1. Abdou, W. A., Diner, D. J., Martonchik, J. V., Bruegge, C. J., Kahn, R. A., Gaitley, B. J., Crean, K. A., Remer, L. A., and Holben, B.: Comparison of coincident multiangle imaging spectroradiometer and moderate resolution imaging spectroradiometer aerosol optical depths over land and ocean scenes containing aerosol robotic network sites, J. Geophys. Res., 110, D10S07, https://doi.org/10.1029/2004JD004693, 2005.

2. Bond, T. C., Streets, D. G., Fernandes, S. D., Nelson, S. M., Yarber, K. F., Woo, J.-H., and Klimont, Z.: A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res., 109, D14203, https://doi.org/10.1029/2003JD003697, 2004.

3. Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D. G., Fernandes, S., and Trautmann, N.: Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000, with new emissions factors developed in collaboration with Liousse, C. Global Biogeochem. Cy., 21, GB2018, https://doi.org/10.1029/2006GB002840, 2007.

4. Buhaug, Ø., Corbett, J. J., Endresen, Ø., Eyring, V., Faber, J., Hanayama, S., Lee, D. S., Lee, D., Lindstad, H., Markowska, A. Z., Mjelde, A., Nelissen, D., Nilsen, J., Pålsson, C., Winebrake, J. J., and Wu, W.-Q., and Yoshida, K.: Second IMO GHG study 2009, International Maritime Organization (IMO) London, UK, 2009.

5. Chylek, P., Lohmann, U., Dubey, M., Mishchenko, M., Kahn, R., and Ohmura, A.: Limits on climate sensitivity derived from recent satellite and surface Observations, J. Geophys. Res., 112, D24S04, https://doi.org/10.1029/2007JD008740, 2007.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3