A theoretical study on UV-spectroscopy, electronic structure and reactivity properties of sesquiterpenes

Author:

Hu S.-X.,Yu J.-G.,Zeng E. Y.

Abstract

Abstract. Sesquiterpenes, a class of biogenic volatile organic compounds, are important precursors to secondary organic aerosols (SOAs) in nature. Using density functional theory (DFT), conceptual DFT, time-dependent (TD) DFT, configuration interaction with single excitation (CIS), and Zerner's intermediate neglect of differential overlap (ZINDO) methods, the electronic structures, spectroscopy, and reactivity of sesquiterpenes were systematically investigated. Results from the CIS calculations show the best consistency in the excited energies and allow for assigning and predicting newly found sesquiterpenes. The results suggest that the first peaks in the ultraviolet-visible (UV-vis) absorption spectra for saturated and unsaturated isomers are σ–σ* and π–π* transitions, respectively. It can be deduced from the transit intensities of the isomers that an isomer with an endocyclic C = C bond presents weaker UV transition intensity than its corresponding exocyclic isomer. The electronic structures of these compounds were also analyzed by comparing published UV-spectroscopy with advanced theoretical calculations. α-Zingiberene and longicyclene are the most and least reactive in electron-transfer reactions, respectively. No quantitative linear relationships were discovered between the changes in transit energies, DFT chemical reactivity indices of isomers, different degrees of unsaturated C = C double bonds, or the number of substituents attached to the C = C bond. The larger steric hindrance of substituents or exocyclic C = C bond is related directly to higher chemical reactivity possessed by the isomer compared to a corresponding isomer with smaller steric hindrandce or with an endo C = C bond. These results are imperative to a better understanding of SOA production mechanisms in the troposphere.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3