Global distribution of the effective aerosol hygroscopicity parameter for CCN activation

Author:

Pringle K. J.,Tost H.,Pozzer A.,Pöschl U.,Lelieveld J.

Abstract

Abstract. In this study we use the ECHAM/MESSy Atmospheric Chemistry (EMAC) model to simulate global fields of the effective hygroscopicity parameter κ which approximately describes the influence of chemical composition on the cloud condensation nucleus (CCN) activity of aerosol particles. The obtained global mean values of κ at the Earth's surface are 0.27±0.21 for continental and 0.72±0.24 for marine regions (arithmetic mean ± standard deviation). The mean κ values are in good agreement with previous estimates based on observational data, but the model standard deviation for continental regions is higher. Over the continents, the regional distribution appears fairly uniform, with κ values mostly in the range of 0.1–0.4. Lower values over large arid regions and regions of high organic loading lead to reduced continental average values for Africa and South America (0.15–0.17) compared to the other continents (0.21–0.36). Marine regions show greater variability with κ values ranging from 0.9–1.0 in remote regions to 0.4–0.6 in continental outflow regions where the highly hygroscopic sea spray aerosol mixes with less hygroscopic continental aerosol. Marine κ values as low as 0.2–0.3 are simulated in the outflow from the Sahara desert. At the top of the planetary boundary layer the κ values can deviate substantially from those at the surface (up to 30%) – especially in marine and coastal regions. In moving from the surface to the height of the planetary boundary layer, the global average marine κ value reduces by 20%. Thus, surface observations may not always be representative for the altitudes where cloud formation mostly occurs. In a pre-industrial model scenario, the κ values tend to be higher over marine regions and lower over the continents, because the anthropogenic particulate matter is on average less hygroscopic than sea-spray but more hygroscopic than the natural continental background aerosol (dust and organic matter). The influence of industrialisation on aerosol hygroscopicity appears to be less pronounced than the influence on the atmospheric aerosol burden. However, in regions influenced by desert dust the particle hygroscopicity has increased strongly as the mixing of air pollutants with mineral particles typically enhances the Kappa values by a factor of 2–3.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3