Space-based evaluation of interactions between pollution plumes and low-level Arctic clouds during the spring and summer of 2008

Author:

Tietze K.,Riedi J.,Stohl A.,Garrett T. J.

Abstract

Abstract. This study explores the indirect effects of anthropogenic and biomass burning aerosols on Arctic clouds by co-locating a combination of MODIS and POLDER cloud products with output from the FLEXPART tracer transport model. During the activities of the International Polar Year for the Spring and Summer of 2008, we find a high sensitivity of Arctic cloud radiative properties to both anthropogenic and biomass burning pollution plumes, particularly at air temperatures near freezing or potential temperatures near 286 K. However, the sensitivity is much lower at both colder and warmer temperatures, likely due increases in the wet scavenging of cloud condensation nuclei: the pollution plumes remain but the component that influences clouds has been removed along transport pathways. The analysis shows that, independent of temperature, cloud optical depth is approximately four times more sensitive to changes in pollution levels than is cloud effective radius. This suggests that some form of feedback mechanism amplifies the radiative response of Arctic clouds to pollution through changes in cloud liquid water path.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3