Observations of elevated formaldehyde over a forest canopy suggest missing sources from rapid oxidation of arboreal hydrocarbons

Author:

Choi W.,Faloona I. C.,Bouvier-Brown N. C.,McKay M.,Goldstein A. H.,Mao J.,Brune W. H.,LaFranchi B. W.,Cohen R. C.,Wolfe G. M.,Thornton J. A.,Sonnenfroh D. M.,Millet D. B.

Abstract

Abstract. To better understand the processing of biogenic VOCs (BVOCs) in the pine forests of the U.S. Sierra Nevada, we measured HCHO at Blodgett Research Station using Quantum Cascade Laser Spectroscopy (QCLS) during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) of late summer 2007. Four days of the experiment exhibited particularly copious HCHO, with midday peaks between 15–20 ppbv, while the other days developed delayed maxima between 8–14 ppbv in the early evening. From the expansive photochemical data set, we attempt to explain the observed HCHO concentrations by quantifying the various known photochemical production and loss terms in its chemical budget. Overall, known chemistry predicts a factor of 3–5 times less HCHO than observed. By examining diurnal patterns of the various budget terms we conclude that, during the high HCHO period, local, highly reactive oxidation chemistry produces an abundance of formaldehyde at the site. The results support the hypothesis of previous work at Blodgett Forest suggesting that large quantities of BVOC oxidation products, observed directly above the ponderosa pine canopy, are evidence of profuse emissions of very reactive volatile organic compounds (VR-VOCs) from the forest. However, on the majority of days, under generally cooler and more moist conditions, lower levels of HCHO develop primarily influenced by the influx of precursors transported into the region along with the Sacramento plume.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3