A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics

Author:

Donahue N. M.,Epstein S. A.,Pandis S. N.,Robinson A. L.

Abstract

Abstract. We develop the thermodynamic underpinnings of a two-dimensional volatility basis set (2-D-VBS) employing saturation concentration (Co) and the oxygen content (O:C) to describe volatility, mixing thermodynamics, and chemical evolution of organic aerosol. This is an extension of our earlier one-dimensional approach employing C* only (C*=γ Co, where γ is an activity coefficient). We apply a mean-field approximation for organic aerosol, describing interactions of carbon and oxygen groups in individual molecules (solutes) with carbon and oxygen groups in the organic-aerosol solvent. In so doing, we show that a linear structure activity relation (SAR) describing the single-component Co of a molecule is directly tied to ideal solution (Raoult's Law) behavior. Conversely, non-ideal solution behavior (activity coefficients) and a slightly non-linear SAR emerge from off-diagonal (carbon-oxygen) interaction elements. From this foundation we can build a self-consistent description of OA mixing thermodynamics, including predicted saturation concentrations and activity coefficients (and phase separation) for various solutions from just four free parameters: the carbon number of a hydrocarbon with a 1 μg m−3 Co, and the carbon-carbon, oxygen-oxygen, and non-ideal carbon-oxygen terms. This treatment establishes the mean molecular formula for organics within this 2-D space as well as activity coefficients for molecules within this space interacting with any bulk OA phase described by an average O:C.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3