Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France)
Author:
Favez O.,El Haddad I.,Piot C.,Boréave A.,Abidi E.,Marchand N.,Jaffrezo J.-L.,Besombes J.-L.,Personnaz M.-B.,Sciare J.,Wortham H.,George C.,D'Anna B.
Abstract
Abstract. The emission of organic aerosols (OA) in the ambient air by residential wood burning is nowadays a subject of great scientific concern and a growing number of studies aim at apportioning the influence of such emissions on urban air quality. In the present study, results obtained using two commonly-used source apportionment models, i.e., Chemical Mass Balance (CMB, performed with off-line filter measurements) and Positive Matrix Factorization (PMF, applied to aerosol mass spectrometer measurements), as well as using the recently-proposed aethalometer model (based on the measurement of the aerosol light absorption at different wavelengths) are inter-compared. This work is performed using field data obtained during the winter season (14 to 30 January 2009) at an urban background site of a French Alpine city (Grenoble). Converging results from the different models indicate a major contribution of wood burning organic aerosols (OMwb) to the organic fraction, with mean OMwb contributions to total OA of about 67%, 60% and 38% for the CMB, the aethalometer and the AMS-PMF models, respectively. Quantitative discrepancies might notably be due to the overestimation of OMwb calculated by the CMB due to the loss of semi-volatile compounds from sources to receptor site, as well as to the accounting of oxidized primary wood burning organic (OPOAwb) aerosols within the Oxygenated Organic Aerosol (OOA) PMF-factor. This OOA factor accounts on average for about 50% of total OM, while non-combustion sources contribute to about 25% and 28% of total OM according to the CMB and aethalometer models, respectively. Each model suggests a mean contribution of fossil fuel emissions to total OM of about 10%. A good agreement is also obtained for the source apportionment of elemental carbon (EC) by both the CMB and aethalometer models, with fossil fuel emissions representing on average more than 80% of total EC.
Publisher
Copernicus GmbH
Reference71 articles.
1. Aiken, A. C., DeCarlo, P. F., Kroll, J. H., et al.: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 12, 4478–4485, 2008. 2. Alfarra, M. R.: Insights into atmospheric organic aerosols using an aerosol mass spectrometer, Ph.D. Thesis, University of Manchester, 2004. 3. Allan, J. D., Delia, A. E., Coe, H., et al.: A generalised method for the extraction of chemically resolved mass spectra from aerodyne aerosol mass spectrometer data, J. Aerosol Sci., 35, 909–922, 2004. 4. Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, 2006. 5. Aymoz, G., Jaffrezo, J. L., Chapuis, D., Cozic, J., and Maenhaut, W.: Seasonal variation of PM10 main constituents in two valleys of the French Alps, I: EC/OC fractions, Atmos. Chem. Phys., 7, 661–675, 2007.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|