Effects of in situ CO<sub>2</sub> enrichment on structural characteristics, photosynthesis, and growth of the Mediterranean seagrass <i>Posidonia oceanica</i>
-
Published:2016-04-13
Issue:7
Volume:13
Page:2179-2194
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Cox T. Erin, Gazeau FrédéricORCID, Alliouane Samir, Hendriks Iris E.ORCID, Mahacek Paul, Le Fur Arnaud, Gattuso Jean-PierreORCID
Abstract
Abstract. Seagrass is expected to benefit from increased carbon availability under future ocean acidification. This hypothesis has been little tested by in situ manipulation. To test for ocean acidification effects on seagrass meadows under controlled CO2/pH conditions, we used a Free Ocean Carbon Dioxide Enrichment (FOCE) system which allows for the manipulation of pH as continuous offset from ambient. It was deployed in a Posidonia oceanica meadow at 11 m depth in the Northwestern Mediterranean Sea. It consisted of two benthic enclosures, an experimental and a control unit both 1.7 m3, and an additional reference plot in the ambient environment (2 m2) to account for structural artifacts. The meadow was monitored from April to November 2014. The pH of the experimental enclosure was lowered by 0.26 pH units for the second half of the 8-month study. The greatest magnitude of change in P. oceanica leaf biometrics, photosynthesis, and leaf growth accompanied seasonal changes recorded in the environment and values were similar between the two enclosures. Leaf thickness may change in response to lower pH but this requires further testing. Results are congruent with other short-term and natural studies that have investigated the response of P. oceanica over a wide range of pH. They suggest any benefit from ocean acidification, over the next century (at a pH of ∼ 7.7 on the total scale), on Posidonia physiology and growth may be minimal and difficult to detect without increased replication or longer experimental duration. The limited stimulation, which did not surpass any enclosure or seasonal effect, casts doubts on speculations that elevated CO2 would confer resistance to thermal stress and increase the buffering capacity of meadows.
Funder
BNP Paribas Cardif European Commission
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference74 articles.
1. Alcoverro, T., Duarte, C., and Romero, J.: Annual growth dynamics of Posidonia oceanica: contribution of large-scale versus local factors to seasonality, Mar. Ecol.-Prog. Ser., 120, 203–210, https://doi.org/10.3354/meps120203, 1995. 2. Alcoverro, T., Manzanera, M., and Romero, J.: Seasonal and age-dependent variability of Posidonia oceanica (L.) Delile photosynthetic parameters, J. Exp. Mar. Biol. Ecol., 230, 1–13, 1998. 3. Alcoverro, T., Manzanera, M., and Romero, J.: Annual metabolic carbon balance of the seagrass Posidonia oceanica: the importance of carbohydrate reserves, Mar. Ecol.-Prog. Ser., 211, 105–116, 2001. 4. Apostolaki, E. T., Holmer, M., Marba, N., and Karakassis, I.: Metabolic imbalance in coastal vegetated (Posidonia oceanica) and unvegetated benthic ecosystems, Ecosystems, 13, 459–471, 2010. 5. Arnold, T., Mealey, C., Leahey, H., Miller, A. W., Hall-Spencer, J. M., Milazzo, M., and Maers, K.: Ocean acidification and the loss of phenolic substances in marine plants, PLoS ONE, 7, e35107, https://doi.org/10.1371/journal.pone.0035107, 2012.
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|