Variations in energy, flux, and brightness of pulsating aurora measured at high time resolution
-
Published:2017-03-28
Issue:3
Volume:35
Page:493-503
-
ISSN:1432-0576
-
Container-title:Annales Geophysicae
-
language:en
-
Short-container-title:Ann. Geophys.
Author:
Dahlgren HannaORCID, Lanchester Betty S.ORCID, Ivchenko NickolayORCID, Whiter Daniel K.ORCID
Abstract
Abstract. High-resolution multispectral optical and incoherent scatter radar data are used to study the variability of pulsating aurora. Two events have been analysed, and the data combined with electron transport and ion chemistry modelling provide estimates of the energy and energy flux during both the ON and OFF periods of the pulsations. Both the energy and energy flux are found to be reduced during each OFF period compared with the ON period, and the estimates indicate that it is the number flux of foremost higher-energy electrons that is reduced. The energies are found never to drop below a few kilo-electronvolts during the OFF periods for these events. The high-resolution optical data show the occurrence of dips in brightness below the diffuse background level immediately after the ON period has ended. Each dip lasts for about a second, with a reduction in brightness of up to 70 % before the intensity increases to a steady background level again. A different kind of variation is also detected in the OFF period emissions during the second event, where a slower decrease in the background diffuse emission is seen with its brightness minimum just before the ON period, for a series of pulsations. Since the dips in the emission level during OFF are dependent on the switching between ON and OFF, this could indicate a common mechanism for the precipitation during the ON and OFF phases. A statistical analysis of brightness rise, fall, and ON times for the pulsations is also performed. It is found that the pulsations are often asymmetric, with either a slower increase of brightness or a slower fall.
Publisher
Copernicus GmbH
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Reference40 articles.
1. Archer, J., Dahlgren, H., Ivchenko, N., Lanchester, B. S., and Marklund, G. T.: Dynamics and characteristics of black aurora as observed by high-resolution ground-based imagers and radar, Int. J. Remote Sens., 32, 2973–2985, https://doi.org/10.1080/01431161.2010.541517, 2011. 2. Bryant, D. A., Smith, M. J., and Courtier, G. M.: Distant modulation of electron intensity during the expansion phase of an auroral substorm, Planet. Space Sci., 23, 867–878, https://doi.org/10.1016/0032-0633(75)90022-7, 1975. 3. Coroniti, F. V. and Kennel, C. F.: Electron precipitation pulsations, J. Geophys. Res., 75, 1279–1289, https://doi.org/10.1029/JA075i007p01279, 1970. 4. Dahlgren, H., Ivchenko, N., Sullivan, J., Lanchester, B. S., Marklund, G., and Whiter, D.: Morphology and dynamics of aurora at fine scale: first results from the ASK instrument, Ann. Geophys., 26, 1041–1048, https://doi.org/10.5194/angeo-26-1041-2008, 2008. 5. Dahlgren, H., Lanchester, B. S., Ivchenko, N., and Whiter, D. K.: ASK keograms and videos for study on variations in energy, flux and brightness of pulsating aurora measured at high time resolution, https://doi.org/10.5258/SOTON/D0042, University of Southampton, 2017.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|