Mesospheric OH layer altitude at midlatitudes: variability over the Sierra Nevada Observatory in Granada, Spain (37° N, 3° W)

Author:

García-Comas MayaORCID,López-González María José,González-Galindo Francisco,de la Rosa José Luis,López-Puertas ManuelORCID,Shepherd Marianna G.ORCID,Shepherd Gordon G.

Abstract

Abstract. The mesospheric OH layer varies on several timescales, primarily driven by variations in atomic oxygen, temperature, density and transport (advection). Vibrationally excited OH airglow intensity, rotational temperature and altitude are closely interrelated and thus accompany each other through these changes. A correct interpretation of the OH layer variability from airglow measurements requires the study of the three variables simultaneously. Ground-based instruments measure excited OH intensities and temperatures with high temporal resolution, but they do not generally observe altitude directly. Information on the layer height is crucial in order to identify the sources of its variability and the causes of discrepancies in measurements and models. We have used SABER space-based 2002–2015 data to infer an empirical function for predicting the altitude of the layer at midlatitudes from ground-based measurements of OH intensity and rotational temperature. In the course of the analysis, we found that the SABER altitude (weighted by the OH volume emission rate) at midlatitudes decreases at a rate of 40 m decade−1, accompanying an increase of 0.7 % decade−1 in OH intensity and a decrease of 0.6 K decade−1 in OH equivalent temperature. SABER OH altitude barely changes with the solar cycle, whereas OH intensity and temperature vary by 7.8 % per 100 s.f.u. and 3.9 K per 100 s.f.u., respectively. For application of the empirical function to Sierra Nevada Observatory SATI data, we have calculated OH intensity and temperature SATI-to-SABER transfer functions, which point to relative instrumental drifts of −1.3 % yr−1 and 0.8 K yr−1, respectively, and a temperature bias of 5.6 K. The SATI predicted altitude using the empirical function shows significant short-term variability caused by overlapping waves, which often produce changes of more than 3–4 km in a few hours, going along with 100 % and 40 K changes in intensity and temperature, respectively. SATI OH layer wave effects are smallest in summer and largest around New Year's Day. Moreover, those waves vary significantly from day to day. Our estimations suggest that peak-to-peak OH nocturnal variability, mainly due to wave variability, changes within 60 days at least 0.8 km for altitude in autumn, 45 % for intensity in early winter and 6 K for temperature in midwinter. Plausible upper limit ranges of those variabilities are 0.3–0.9 km, 40–55 % and 4–7 K, with the exact values depending on the season.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3