Statistical analysis of the mesospheric inversion layers over two symmetrical tropical sites: Réunion (20.8° S, 55.5° E) and Mauna Loa (19.5° N, 155.6° W)

Author:

Bègue Nelson,Mbatha Nkanyiso,Bencherif Hassan,Loua René TatoORCID,Sivakumar Venkataraman,Leblanc Thierry

Abstract

Abstract. In this investigation a statistical analysis of the characteristics of mesospheric inversion layers (MILs) over tropical regions is presented. This study involves the analysis of 16 years of lidar observations recorded at Réunion (20.8° S, 55.5° E) and 21 years of lidar observations recorded at Mauna Loa (19.5° N, 155.6° W) together with SABER observations at these two locations. MILs appear in 10 and 9.3 % of the observed temperature profiles recorded by Rayleigh lidar at Réunion and Mauna Loa, respectively. The parameters defining MILs show a semi-annual cycle over the two selected sites with maxima occurring near the equinoxes and minima occurring during the solstices. Over both sites, the maximum mean amplitude is observed in April and October, and this corresponds to a value greater than 35 K. According to lidar observations, the maximum and minimum mean of the base height ranged from 79 to 80.5 km and from 76 to 77.5 km, respectively. The MILs at Réunion appear on average ∼ 1 km thinner and ∼ 1 km lower, with an amplitude of ∼ 2 K higher than Mauna Loa. Generally, the statistical results for these two tropical locations as presented in this investigation are in fairly good agreement with previous studies. When compared to lidar measurements, on average SABER observations show MILs with greater amplitude, thickness and base altitudes of 4 K, 0.75 and 1.1 km, respectively. Taking into account the temperature error by SABER in the mesosphere, it can therefore be concluded that the measurements obtained from lidar and SABER observations are in significant agreement. The frequency spectrum analysis based on the lidar profiles and the 60-day averaged profile from SABER confirms the presence of the semi-annual oscillation where the magnitude maximum is found to coincide with the height range of the temperature inversion zone. This connection between increases in the semi-annual component close to the inversion zone is in agreement with most previously reported studies over tropics based on satellite observations. Results presented in this study confirm through the use of the ground-based Rayleigh lidar at Réunion and Mauna Loa that the semi-annual oscillation contributes to the formation of MILs over the tropical region.

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

Reference85 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3