Increase in bacterial community induced tolerance to Cr in response to soil properties and Cr level in the soil

Author:

Campillo-Cora Claudia,Arenas-Lago DanielORCID,Arias-Estévez Manuel,Fernández-Calviño David

Abstract

Abstract. Chromium (Cr) soil pollution is a pressing global concern that demands thorough assessment. The pollution-induced community tolerance (PICT) methodology serves as a highly sensitive tool capable of directly assessing metal toxicity within microbial communities. In this study, 10 soils exhibiting a wide range of properties were subjected to Cr contamination, with concentrations ranging from 31.25 to 2000 mg Cr kg−1, in addition to the control. Bacterial growth, assessed using the [3H]-leucine incorporation technique, was used to determine whether bacterial communities developed tolerance to Cr, i.e. PICT to Cr in response to Cr additions to different soil types. The obtained results revealed that at concentrations of 1000 or 2000 mg Cr kg−1, certain bacterial communities showed inhibited growth, likely attributable to elevated Cr toxicity, while others continued to thrive. Interestingly, with Cr concentrations below 500 mg Cr kg−1, bacterial communities demonstrated two distinct responses depending on soil type: 7 of the 10 studied soils exhibited an increased bacterial community tolerance to Cr, while the remaining 3 soils did not develop such tolerance. Furthermore, the Cr level at which bacterial communities developed tolerance to Cr varies among soils, indicating varying levels of Cr toxicity between studied soils. The dissolved organic carbon (DOC) and the fraction of Cr extracted with distilled water (H2O-Cr) played an essential role in shaping the impact of Cr on microbial communities (R2=95.6 %). These factors (DOC and H2O-Cr) contribute to increased Cr toxicity in soil, i.e. during the selection phase of the PICT methodology.

Funder

Ministerio de Economía y Competitividad

Publisher

Copernicus GmbH

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3