Land inclination controls CO2 and N2O fluxes, but not CH4 uptake, in a temperate upland forest soil

Author:

Gillespie Lauren M.ORCID,Triches Nathalie Y.,Abalos Diego,Finke PeterORCID,Zechmeister-Boltenstern Sophie,Glatzel StephanORCID,Díaz-Pinés EugenioORCID

Abstract

Abstract. Inclination and spatial variability in soil and litter properties influence soil greenhouse gas (GHG) fluxes and thus ongoing climate change, but their relationship in forest ecosystems is poorly understood. To elucidate this, we explored the effect of inclination, distance from a stream, soil moisture, soil temperature, and other soil and litter properties on soil–atmosphere fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) with automated static chambers in a temperate upland forest in eastern Austria. We hypothesised that soil CO2 emissions and CH4 uptake are higher in sloped locations with lower soil moisture content, whereas soil N2O emissions are higher in flat, wetter locations. During the measurement period, soil CO2 emissions were significantly higher on flat locations (p<0.05), and increased with increasing soil temperature (p<0.001) and decreasing soil moisture (p<0.001). The soil acted as a CH4 sink, and CH4 uptake was not significantly related to inclination. However, CH4 uptake was significantly higher at locations furthest away from the stream as compared to at the stream (p<0.001) and positively related to litter weight and soil C content (p<0.01). N2O fluxes were significantly higher on flat locations and further away from the stream (p<0.05) and increased with increasing soil moisture (p<0.001), soil temperature (p<0.001), and litter depth (p<0.05). Overall, this study underlines the importance of inclination and the resulting soil and litter properties in predicting GHG fluxes from forest soils and therefore their potential source-sink balance.

Funder

Österreichische Forschungsförderungsgesellschaft

Klima- und Energiefonds

Horizon 2020

Publisher

Copernicus GmbH

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3