Pore network modeling as a new tool for determining gas diffusivity in peat

Author:

Kiuru PetriORCID,Palviainen Marjo,Marchionne Arianna,Grönholm Tiia,Raivonen Maarit,Kohl LukasORCID,Laurén AnnamariORCID

Abstract

Abstract. Peatlands are globally significant carbon stocks and may become major sources of the greenhouse gases (GHGs) carbon dioxide and methane in a changing climate and under anthropogenic management pressure. Diffusion is the dominant gas transport mechanism in peat; therefore, a proper knowledge of the soil gas diffusion coefficient is important for the estimation of GHG emissions from peatlands. Pore network modeling (PNM) is a potential tool for the determination of gas diffusivity in peat, as it explicitly connects the peat microstructure and the characteristics of the peat pore network to macroscopic gas transport properties. In the present work, we extracted macropore networks from three-dimensional X-ray micro-computed tomography (µCT) images of peat samples and simulated gas diffusion in these networks using PNM. These results were compared to the soil gas diffusion coefficients determined from the same samples in the laboratory using the diffusion chamber method. The measurements and simulations were conducted for peat samples from three depths. The soil gas diffusion coefficients were determined under varying water contents adjusted in a pressure plate apparatus. We also assessed the applicability of commonly used gas diffusivity models to peat. The laboratory measurements showed a decrease in gas diffusivity with depth due to a decrease in air-filled porosity and pore space connectivity. However, gas diffusivity was not extremely low close to saturation, which may indicate that the structure of the macropore network is such that it enables the presence of connected diffusion pathways through the peat matrix, even in wet conditions. The traditional gas diffusivity models were not very successful in predicting the soil gas diffusion coefficient. This may indicate that the microstructure of peat differs considerably from the structure of mineral soils and other kinds of porous materials for which these models have been constructed and calibrated. By contrast, the pore network simulations reproduced the laboratory-determined soil gas diffusion coefficients rather well. Thus, the combination of the µCT and PNM methods may offer a promising alternative to the traditional estimation of soil gas diffusivity through laboratory measurements.

Funder

Academy of Finland

H2020 Excellent Science

H2020 Societal Challenges

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3