Observing relationships between lightning and cloud profiles by means of a satellite-borne cloud radar

Author:

Buiat Martina,Porcù FedericoORCID,Dietrich StefanoORCID

Abstract

Abstract. Cloud electrification and related lightning activity in thunderstorms have their origin in the charge separation and resulting distribution of charged iced particles within the cloud. So far, the ice distribution within convective clouds has been investigated mainly by means of ground-based meteorological radars. In this paper we show how the products from Cloud Profiling Radar (CPR) on board CloudSat, a polar satellite of NASA's Earth System Science Pathfinder (ESSP), can be used to obtain information from space on the vertical distribution of ice particles and ice content and relate them to the lightning activity. The analysis has been carried out, focusing on 12 convective events over Italy that crossed CloudSat overpasses during significant lightning activity. The CPR products considered here are the vertical profiles of cloud ice water content (IWC) and the effective radius (ER) of ice particles, which are compared with the number of strokes as measured by a ground lightning network (LINET). Results show a strong correlation between the number of strokes and the vertical distribution of ice particles as depicted by the 94 GHz CPR products: in particular, cloud upper and middle levels, high IWC content and relatively high ER seem to be favourable contributory causes for CG (cloud to ground) stroke occurrence.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference45 articles.

1. Adamo, C., Solomon, R., Medaglia, C. M., Dietrich, S., and Mugnai, A.: Cloud Microphysical Properties from the Remote Sensing of Lightning within the Mediterranean, edited by:: Levizzani, V., Bauer, P., and Turk, J.: Measuring precipitation from space: EURAINSAT and the future, 127–134, Springer, 2007.

2. Austin, R. T., Heymsfield, A. J., and Stephens, G. L.: Retrieval of ice cloud microphysical parameters using the Cloudsat mm-wave radar and temperature, J. Geophys. Res., 114, D00A23, https://doi.org/10.1029/2008JD010049, 2009.

3. Battaglia, A., Ajewole, M. O., and Simmer, C.: Evaluation of radar multiple scattering effects in Cloudsat configuration, Atmos. Chem. Phys., 7, 1719–1730, https://doi.org/10.5194/acp-7-1719-2007, 2007.

4. Berdeklis, P. and List, R.: The ice crystal-graupel collision charging mechanism of thunderstorm electrification, J. Atmos. Sci.,58, 2751–2770, https://doi.org/10.1175/1520-0469(2001)058< 2751:TICGCC”2.0.CO;2, 2001.

5. Betz, H. D. and Meneux, B.: LINET systems – 10 years experience, Proc. of International Conference on Lightning Protection (ICLP), 1553–1557, https://doi.org/10.1109/ICLP.2014.6973377, 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3