A variational technique to estimate snowfall rate from coincident radar, snowflake, and fall-speed observations
-
Published:2017-07-20
Issue:7
Volume:10
Page:2557-2571
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Cooper Steven J., Wood Norman B.ORCID, L'Ecuyer Tristan S.ORCID
Abstract
Abstract. Estimates of snowfall rate as derived from radar reflectivities alone are non-unique. Different combinations of snowflake microphysical properties and particle fall speeds can conspire to produce nearly identical snowfall rates for given radar reflectivity signatures. Such ambiguities can result in retrieval uncertainties on the order of 100–200 % for individual events. Here, we use observations of particle size distribution (PSD), fall speed, and snowflake habit from the Multi-Angle Snowflake Camera (MASC) to constrain estimates of snowfall derived from Ka-band ARM zenith radar (KAZR) measurements at the Atmospheric Radiation Measurement (ARM) North Slope Alaska (NSA) Climate Research Facility site at Barrow. MASC measurements of microphysical properties with uncertainties are introduced into a modified form of the optimal-estimation CloudSat snowfall algorithm (2C-SNOW-PROFILE) via the a priori guess and variance terms. Use of the MASC fall speed, MASC PSD, and CloudSat snow particle model as base assumptions resulted in retrieved total accumulations with a −18 % difference relative to nearby National Weather Service (NWS) observations over five snow events. The average error was 36 % for the individual events. Use of different but reasonable combinations of retrieval assumptions resulted in estimated snowfall accumulations with differences ranging from −64 to +122 % for the same storm events. Retrieved snowfall rates were particularly sensitive to assumed fall speed and habit, suggesting that in situ measurements can help to constrain key snowfall retrieval uncertainties. More accurate knowledge of these properties dependent upon location and meteorological conditions should help refine and improve ground- and space-based radar estimates of snowfall.
Funder
National Science Foundation U.S. Department of Energy National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference67 articles.
1. Auer Jr., A. H. and Veal, D. L.: The dimensions of ice crystals in natural clouds, J. Atmos. Sci., 27, 919–926, 1970. 2. Bharadwaj, N., Lindenmaier, A., Widener, K. B., Johnson, K. L., and Venkatesh, V.: Ka-band ARM zenith profiling radar (KAZR) network for climate study, 36th Conf. on Radar Meteorology, Breckenridge, CO, Amer. Meteor., 2013. 3. Black, R. F.: Precipitation at Barrow, Alaska, greater than recorded, EOS Trans. AGU, 35, 203–207, 1954. 4. Brown, R., Derksen, C., and Wang, L.: A multi-data set analysis of variability and change in Arctic spring snow cover extent, 1967–2008, J. Geophys. Res., 115, D16111, https://doi.org/10.1029/2010JD013975, 2010. 5. Brown, R. D.: Northern Hemisphere snow cover variability and change, 1915–1997, J. Climate, 13, 2339–2355, 2000.
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|