Evaluation of single and multiple Doppler lidar techniques to measure complex flow during the XPIA field campaign
-
Published:2017-01-23
Issue:1
Volume:10
Page:247-264
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Choukulkar AdityaORCID, Brewer W. Alan, Sandberg Scott P., Weickmann Ann, Bonin Timothy A., Hardesty R. Michael, Lundquist Julie K.ORCID, Delgado Ruben, Iungo G. ValerioORCID, Ashton Ryan, Debnath Mithu, Bianco Laura, Wilczak James M., Oncley Steven, Wolfe Daniel
Abstract
Abstract. Accurate three-dimensional information of wind flow fields can be an important tool in not only visualizing complex flow but also understanding the underlying physical processes and improving flow modeling. However, a thorough analysis of the measurement uncertainties is required to properly interpret results. The XPIA (eXperimental Planetary boundary layer Instrumentation Assessment) field campaign conducted at the Boulder Atmospheric Observatory (BAO) in Erie, CO, from 2 March to 31 May 2015 brought together a large suite of in situ and remote sensing measurement platforms to evaluate complex flow measurement strategies. In this paper, measurement uncertainties for different single and multi-Doppler strategies using simple scan geometries (conical, vertical plane and staring) are investigated. The tradeoffs (such as time–space resolution vs. spatial coverage) among the different measurement techniques are evaluated using co-located measurements made near the BAO tower. Sensitivity of the single-/multi-Doppler measurement uncertainties to averaging period are investigated using the sonic anemometers installed on the BAO tower as the standard reference. Finally, the radiometer measurements are used to partition the measurement periods as a function of atmospheric stability to determine their effect on measurement uncertainty. It was found that with an increase in spatial coverage and measurement complexity, the uncertainty in the wind measurement also increased. For multi-Doppler techniques, the increase in uncertainty for temporally uncoordinated measurements is possibly due to requiring additional assumptions of stationarity along with horizontal homogeneity and less representative line-of-sight velocity statistics. It was also found that wind speed measurement uncertainty was lower during stable conditions compared to unstable conditions.
Funder
Office of Energy Efficiency and Renewable Energy
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference44 articles.
1. Banta, R. M., Pichugina, Y. L., Brewer, W. A., Lundquist, J. K., Kelley, N. D., Sandberg, S. P., Alvarez II, R. J., Hardesty, R. M., and Weickmann, A. M.: 3D Volumetric Analysis of Wind Turbine Wake Properties in the Atmosphere Using High-Resolution Doppler Lidar, J. Atmos. Ocean. Tech., 32, 904–914, https://doi.org/10.1175/JTECH-D-14-00078.1, 2015. 2. Barlow, J. F., Dunbar, T. M., Nemitz, E. G., Wood, C. R., Gallagher, M. W., Davies, F., O'Connor, E., and Harrison, R. M.: Boundary layer dynamics over London, UK, as observed using Doppler lidar during REPARTEE-II, Atmos. Chem. Phys., 11, 2111–2125, https://doi.org/10.5194/acp-11-2111-2011, 2011. 3. Berg, J., Vasiljevíc, N., Kelly, M., Lea, G., and Courtney, M.: Addressing Spatial Variability of Surface-Layer Wind with Long-Range WindScanners, J. Atmos. Ocean. Tech., 32, 518–527, https://doi.org/10.1175/JTECH-D-14-00123.1, 2015. 4. Bianco, L., Friedrich, K., Wilczak, J., Hazen, D., Wolfe, D., Delgado, R., Oncley, S., and Lundquist, J. K.: Assessing the accuracy of microwave radiometers and radio acoustic sounding systems for wind energy applications, Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-321, in review, 2016. 5. Bingöl, F., Mann, J., and Foussekis, D.: Conically scanning lidar error in complex terrain, Meteorol. Z., 18, 189–195, https://doi.org/10.1127/0941-2948/2009/0368, 2009.
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|