Elemental composition of ambient aerosols measured with high temporal resolution using an online XRF spectrometer
-
Published:2017-06-07
Issue:6
Volume:10
Page:2061-2076
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Furger MarkusORCID, Minguillón María CruzORCID, Yadav Varun, Slowik Jay G., Hüglin ChristophORCID, Fröhlich Roman, Petterson Krag, Baltensperger Urs, Prévôt André S. H.
Abstract
Abstract. The Xact 625 Ambient Metals Monitor was tested during a 3-week field campaign at the rural, traffic-influenced site Härkingen in Switzerland during the summer of 2015. The field campaign encompassed the Swiss National Day fireworks event, providing increased concentrations and unique chemical signatures compared to non-fireworks (or background) periods. The objective was to evaluate the data quality by intercomparison with other independent measurements and test its applicability for aerosol source quantification. The Xact was configured to measure 24 elements in PM10 with 1 h time resolution. Data quality was evaluated for 10 24 h averages of Xact data by intercomparison with 24 h PM10 filter data analysed with ICP-OES for major elements, ICP-MS for trace elements, and gold amalgamation atomic absorption spectrometry for Hg. Ten elements (S, K, Ca, Ti, Mn, Fe, Cu, Zn, Ba, Pb) showed excellent correlation between the compared methods, with r2 values ≥ 0.95. However, the slopes of the regressions between Xact 625 and ICP data varied from 0.97 to 1.8 (average 1.28) and thus indicated generally higher Xact elemental concentrations than ICP for these elements. Possible reasons for these differences are discussed, but further investigations are needed. For the remaining elements no conclusions could be drawn about their quantification for various reasons, mainly detection limit issues. An indirect intercomparison of hourly values was performed for the fireworks peak, which brought good agreement of total masses when the Xact data were corrected with the regressions from the 24 h value intercomparison. The results demonstrate that multi-metal characterization at high-time-resolution capability of Xact is a valuable and practical tool for ambient monitoring.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference49 articles.
1. ACES: Equivalence of PM10 instruments at a road traffic site, Stockholm University, Stockholm, Sweden, 67 pp., 2012. 2. Alastuey, A., Querol, X., Aas, W., Lucarelli, F., Pérez, N., Moreno, T., Cavalli, F., Areskoug, H., Balan, V., Catrambone, M., Ceburnis, D., Cerro, J. C., Conil, S., Gevorgyan, L., Hueglin, C., Imre, K., Jaffrezo, J.-L., Leeson, S. R., Mihalopoulos, N., Mitosinkova, M., O'Dowd, C. D., Pey, J., Putaud, J.-P., Riffault, V., Ripoll, A., Sciare, J., Sellegri, K., Spindler, G., and Yttri, K. E.: Geochemistry of PM10 over Europe during the EMEP intensive measurement periods in summer 2012 and winter 2013, Atmos. Chem. Phys., 16, 6107–6129, https://doi.org/10.5194/acp-16-6107-2016, 2016. 3. Annegarn, H. J., Braga Marcazzan, G. M., Cereda, E., Marchionni, M., and Zucchiatti, A.: Source profiles by unique ratios (SPUR) analysis: Determination of source profiles from receptor-site streaker samples, Atmos. Environ. A-Ge., 26, 333–343, 1992. 4. BAFU and Empa: NABEL – Luftbelastung 2014, Bern, Switzerland, UZ-1515-D, 132 pp., 2015. 5. Botasini, S., Heijo, G., and Méndez, E.: Toward decentralized analysis of mercury (II) in real samples. A critical review on nanotechnology-based methodologies, Anal. Chim. Acta, 800, 1–11, 2013.
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|