Variability of nitrogen oxide emission fluxes and lifetimes estimated from Sentinel-5P TROPOMI observations
-
Published:2022-03-01
Issue:4
Volume:22
Page:2745-2767
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Lange Kezia, Richter AndreasORCID, Burrows John P.ORCID
Abstract
Abstract. Satellite observations of the high-resolution TROPOspheric Monitoring Instrument (TROPOMI) on Sentinel-5 Precursor can be used to observe nitrogen dioxide (NO2) at city scales to quantify short time variability of nitrogen oxide (NOx) emissions and lifetimes on a daily and seasonal basis. In this study, 2 years of TROPOMI tropospheric NO2 columns, having a spatial resolution of up to 3.5 km × 5.5 km, have been analyzed together with wind and ozone data. NOx lifetimes and emission fluxes are estimated for 50 different NOx sources comprising cities, isolated power plants, industrial regions, oil fields, and regions with a mix of sources distributed around the world. The retrieved NOx emissions are in agreement with other TROPOMI-based estimates and reproduce the variability seen in power plant stack measurements but are in general lower than the analyzed stack measurements and emission inventory results. Separation into seasons shows a clear seasonal dependence of NOx emissions with in general the highest emissions during winter, except for isolated power plants and especially sources in hot desert climates, where the opposite is found. The NOx lifetime shows a systematic latitudinal dependence with an increase in lifetime from 2 to 8 h with latitude but only a weak seasonal dependence. For most of the 50 sources including the city of Wuhan in China, a clear weekly pattern of NOx emissions is found, with weekend-to-weekday ratios of up to 0.5 but with a high variability for the different locations. During the Covid-19 lockdown period in 2020, strong reductions in the NOx emissions were observed for New Delhi, Buenos Aires, and Madrid.
Funder
Deutsches Zentrum für Luft- und Raumfahrt
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference61 articles.
1. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes,
R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and
photochemical data for atmospheric chemistry: Volume I – gas phase reactions
of Ox, HOx, NOx and SOx species, Atmos. Chem.
Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004. a 2. Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J.-F., Van Gent, J.,
Eskes, H., Levelt, P., van der A, R., Veefkind, J., Vlietinck, J., and Zehner, C.:
Impact of coronavirus outbreak on NO2 pollution assessed using TROPOMI and
OMI observations, Geophys. Res. Lett., 47, e2020GL087978, https://doi.org/10.1029/2020GL087978, 2020. a, b, c, d 3. Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Weekly cycle of NO2 by
GOME measurements: a signature of anthropogenic sources, Atmos.
Chem. Phys., 3, 2225–2232, https://doi.org/10.5194/acp-3-2225-2003, 2003. a, b, c, d, e 4. Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G., and Wagner, T.:
Megacity emissions and lifetimes of nitrogen oxides probed from space,
Science, 333, 1737–1739, 2011. a, b, c, d, e, f, g, h, i, j, k, l, m, n 5. Beirle, S., Borger, C., Dörner, S., Li, A., Hu, Z., Liu, F., Wang, Y., and
Wagner, T.: Pinpointing nitrogen oxide emissions from space, Sci.
Adv., 5, eaax9800, https://doi.org/10.1126/sciadv.aax9800, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|