Source-resolved variability of fine particulate matter and human exposure in an urban area

Author:

Garcia Rivera PabloORCID,Dinkelacker Brian T.,Kioutsioukis IoannisORCID,Adams Peter J.,Pandis Spyros N.

Abstract

Abstract. Increasing the resolution of chemical transport model (CTM) predictions in urban areas is important to capture sharp spatial gradients in atmospheric pollutant concentrations and better inform air quality and emissions controls policies that protect public health. The chemical transport model PMCAMx (Particulate Matter Comprehensive Air quality Model with Extensions) was used to assess the impact of increasing model resolution on the ability to predict the source-resolved variability and population exposure to PM2.5 at 36×36, 12×12, 4×4, and 1×1 km resolutions over the city of Pittsburgh during typical winter and summer periods (February and July 2017). At the coarse resolution, county-level differences can be observed, while increasing the resolution to 12×12 km resolves the urban–rural gradient. Increasing resolution to 4×4 km resolves large stationary sources such as power plants, and the 1×1 km resolution reveals intra-urban variations and individual roadways within the simulation domain. Regional pollutants that exhibit low spatial variability such as PM2.5 nitrate show modest changes when increasing the resolution beyond 12×12 km. Predominantly local pollutants such as elemental carbon and primary organic aerosol have gradients that can only be resolved at the 1×1 km scale. Contributions from some local sources are enhanced by weighting the average contribution from each source by the population in each grid cell. The average population-weighted PM2.5 concentration does not change significantly with resolution, suggesting that extremely high resolution PM2.5 predictions may not be necessary for effective urban epidemiological analysis at the county level.

Funder

U.S. Environmental Protection Agency

H2020 Societal Challenges

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference34 articles.

1. Anand, S.: The concern for equity in health, J. Epidemiol. Commun. H., 56, 485–487, 2002.

2. Arunachalam, S., Holland, A., Do, B., and Abraczinskas, M.: A quantitative assessment of the influence of grid resolution on predictions of future-year air quality in North Carolina, USA, Atmos. Environ., 40, 5010–5026, 2006.

3. Carter, W. P. L.: Documentation of the SAPRC-99 chemical mechanism for VOC reactivity assessment, Final Report to California Air Resources Board Contract 92-329 and Contract 95-308, Air Pollution Research Center and College of Engineering Center for Environmental Research and Technology, University of California Riverside, California, 2000.

4. Day, M., Pouliot, G., Hunt, S., Baker, K. R., Beardsley, M., Frost, G., Mobley, D., Simon, H., Henderson, B., Yelverton, T., and Rao, V.: Reflecting on progress since the 2005 NARSTO emissions inventory report, J. Air Waste Manage., 69, 1025–1050, 2019.

5. Dinkelacker, B. T., Garcia Rivera, P., Kioutsioukis, I., Adams, P., and Pandis, S. N.: Source Code for PMCAMx-v2.0: High-resolution modeling of fine particulate matter in an urban area using PMCAMx-v2.0, Zenodo [code], https://doi.org/10.5281/zenodo.5094477, 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3